Abstract:
To provide a semiconductor device having a high aperture ratio and including a capacitor with a high charge capacitance. To provide a semiconductor device with a narrow bezel. A transistor over a substrate; a first conductive film over a surface over which a gate electrode of the transistor is provided; a second conductive film over a surface over which a pair of electrodes of the transistor is provided; and a first light-transmitting conductive film electrically connected to the first conductive film and the second conductive film are included. The second conductive film overlaps the first conductive film with a gate insulating film of the transistor laid between the second conductive film and the first conductive film.
Abstract:
An object is to reduce leakage current and parasitic capacitance of a transistor used for an LSI, a CPU, or a memory. A semiconductor integrated circuit such as an LSI, a CPU, or a memory is manufactured using a thin film transistor in which a channel formation region is formed using an oxide semiconductor which becomes an intrinsic or substantially intrinsic semiconductor by removing impurities which serve as electron donors (donors) from the oxide semiconductor and has larger energy gap than that of a silicon semiconductor. With use of a thin film transistor using a highly purified oxide semiconductor layer with sufficiently reduced hydrogen concentration, a semiconductor device with low power consumption due to leakage current can be realized.
Abstract:
Provided is a novel display panel which is highly convenient or reliable or a driving method thereof. The display panel includes a first display element, a first conductive film electrically connected to the first display element, a second conductive film having a region overlapping with the first conductive film, an insulating film having a region sandwiched between the second conductive film and the first conductive film, a pixel circuit electrically connected to the second conductive film, and a second display element electrically connected to the pixel circuit. The insulating film has an opening. The second conductive film is electrically connected to the first conductive film in the opening.
Abstract:
A display device includes a plurality of pulse output circuits each of which outputs signals to one of the two kinds of scan lines and a plurality of inverted pulse output circuits each of which outputs, to the other of the two kinds of scan lines, inverted or substantially inverted signals of the signals output from the pulse output circuits. Each of the plurality of inverted pulse output circuits operates with at least two kinds of signals used for the operation of the plurality of pulse output circuits. Thus, through current generated in the inverted pulse output circuits can be reduced.
Abstract:
Transistors each include a gate electrode, a gate insulating layer over the gate electrode, an oxide semiconductor layer over the gate insulating layer, and a source electrode and a drain electrode over the oxide semiconductor layer. A driver circuit portion includes first to third wirings formed in the same step as the gate electrode, fourth to sixth wirings formed in the same step as the source electrode and the drain electrode, a seventh wiring formed in the same step as a pixel electrode, a first region where the second wiring intersects with the fifth wiring, and a second region where the third wiring intersects with the sixth wiring. The first wiring is connected to the fourth wiring through the seventh wiring. A distance between the wirings in the second region is longer than that in the first region.
Abstract:
To provide a semiconductor device having a high aperture ratio and including a capacitor with a high charge capacitance. To provide a semiconductor device with a narrow bezel. A transistor over a substrate; a first conductive film over a surface over which a gate electrode of the transistor is provided; a second conductive film over a surface over which a pair of electrodes of the transistor is provided; and a first light-transmitting conductive film electrically connected to the first conductive film and the second conductive film are included. The second conductive film overlaps the first conductive film with a gate insulating film of the transistor laid between the second conductive film and the first conductive film.
Abstract:
A highly reliable semiconductor device in which a shift in the threshold voltage of a transistor due to deterioration is prevented is provided. The semiconductor device is formed using a sequential circuit including: a first transistor controlling the electrical connection between a first wiring and a second wiring; a second transistor and a third transistor in each of which a source and a drain are electrically connected to each other and which control the electrical connection between the second wiring and a third wiring; and a switch group controlling the electrical connection between a gate of the first transistor and the third wiring or a fourth wiring, the electrical connection between a gate of the second transistor and the third wiring or the fourth wiring, and the electrical connection between a gate of the third transistor and the third wiring or the fourth wiring in response to a control signal.
Abstract:
An object of the present invention is to provide a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit. In an embodiment of the pulse signal output circuit, a transistor has a source terminal or a drain terminal connected to a gate electrode of another transistor having a source terminal or a drain terminal forming an output terminal of the pulse signal output circuit, the channel length of the transistor being longer than the channel length of the other transistor. Thereby, the amount of a leakage current modifying the gate potential of the other transistor can be reduced, and a malfunction of the pulse signal output circuit can be prevented.
Abstract:
An object is to provide a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit. A pulse signal output circuit according to one embodiment of the disclosed invention includes first to tenth transistors. The ratio W/L of the channel width W to the channel length L of the first transistor and W/L of the third transistor are each larger than W/L of the sixth transistor. W/L of the fifth transistor is larger than W/L of the sixth transistor. W/L of the fifth transistor is equal to W/L of the seventh transistor. W/L of the third transistor is larger than W/L of the fourth transistor. With such a structure, a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit can be provided.
Abstract:
To reduce power consumption of a display device including a scan line driver circuit formed using either n-channel transistors or p-channel transistors when the scan line driver circuit outputs, to one of two kinds of scan lines, inverted or substantially inverted signals of signals output to the other of the two kinds of scan lines. The display device includes a plurality of pulse output circuits each of which outputs a signal to one of two kinds of scan lines and a plurality of inverted pulse output circuits each of which outputs, to the other of the two kinds of scan lines, an inverted or substantially inverted signal output from the each of the pulse output circuits. The plurality of inverted pulse output circuits operate with signals used for the operation of the plurality of pulse output circuits. Thus, through current generated in the inverted pulse output circuits can be reduced.