Abstract:
A magnetic recording array includes: a plurality of spin elements each including a wiring and a laminated body having a first ferromagnetic layer laminated on the wiring and arranged in a matrix; a plurality of write wirings connected to first ends of the spin elements' wiring; a plurality of read wirings connected to the laminated bodies of the spin elements; a plurality of common wirings connected to second ends of the wirings of the spin elements belonging to the same column; and a control unit configured to control a write current flowing between first and second ends of each spin element, wherein when data writing is performed continuously, the unit is configured to prohibit writing to at least a spin element connected to the same common wiring as a first spin element and adjacent to the first spin element after the first element to which the current is applied.
Abstract:
A magnetic head has a magnetic head slider that includes a recording element that generates a recording signal magnetic field, a microwave magnetic field generating element that generates a microwave magnetic field, a terminal electrode, and a first transmission line that interconnects the terminal electrode and the microwave magnetic field generating element. A second transmission line is connected to the terminal electrode, the second transmission line being used to transmit a microwave signal from the outside of the magnetic head slider to the magnetic head slider. A capacitor connected to the first transmission line is provided between the terminal electrode and the microwave magnetic field generating element. Accordingly, in the magnetic head, a microwave signal is efficiently propagated.
Abstract:
A high-frequency amplifier circuit includes a balanced-unbalanced converter converting a single-ended signal into differential signals. The output of a first amplifier amplifying the single-ended signal is connected to the signal terminal on the unbalanced side of the balanced-unbalanced converter. The input of a second amplifier amplifying one of the differential signals is connected to one signal terminal on the balanced side of the balanced-unbalanced converter. The input of a third amplifier amplifying another of the differential signals is connected to another signal terminal on the balanced side of the balanced-unbalanced converter. An impedance element is inserted between an element on the balanced side of the balanced-unbalanced converter and a ground.
Abstract:
A storage element includes a first ferromagnetic layer; a second ferromagnetic layer; a nonmagnetic layer interposed between the first ferromagnetic layer and the second ferromagnetic layer in a first direction; a first wiring that extends in a second direction different from the first direction and together with the nonmagnetic layer sandwiches the first ferromagnetic layer in the first direction; and an electrode that together with the nonmagnetic layer sandwiches the second ferromagnetic layer in at least a part in the first direction, wherein the electrode is in contact with at least a part of a lateral side surface of the second ferromagnetic layer.
Abstract:
A spin element includes an element portion including a first ferromagnetic layer, a conducting portion that extends in a first direction as viewed in a lamination direction of the first ferromagnetic layer and faces the first ferromagnetic layer, and a current path extending from the conducting portion to a semiconductor circuit and having a resistance adjusting portion between the conducting portion and the semiconductor circuit, wherein the resistance value of the resistance adjusting portion is higher than the resistance value of the conducting portion, and the temperature coefficient of the volume resistivity of a material forming the resistance adjusting portion is lower than the temperature coefficient of the volume resistivity of a material forming the conducting portion.
Abstract:
Provided is a magnetic memory including: a first bit line, a second bit line, and a third bit line; a word line; a first magnetoresistance effect element; a first transistor; a second magnetoresistance effect element; and a second transistor, wherein free layers of the first and second magnetoresistance effect elements and the second bit line are connected, a fixed layer of the first magnetoresistance effect element and a source terminal of the first transistor are connected, a drain terminal of the first transistor and the first bit line are connected, a fixed layer of the second magnetoresistance effect element and a drain terminal of the second transistor are connected, a source terminal of the second transistor and the third bit line are connected, and the word line is connected to each of a gate terminal of the first transistor and a gate terminal of the second transistor.
Abstract:
A magnetic memory including a plurality of magnetoresistance effect elements that hold information, each including a first ferromagnetic metal layer with a fixed magnetization direction, a second ferromagnetic metal layer with a varying magnetization direction, and a non-magnetic layer sandwiched between the first and second ferromagnetic metal layers; a plurality of first control elements that control reading of the information, wherein each of the plurality of first ferromagnetic metal layers is connected to a first control element; a plurality of spin-orbit torque wiring lines that extend in a second direction intersecting with a first direction which is a stacking direction of the magnetoresistance effect elements, wherein each of the second ferromagnetic metal layers is joined to one spin-orbit torque wiring line; a plurality of second control elements that control electric current flowing through the spin-orbit torque wiring lines.