Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
A transistor device includes a field plate that extends from a source runner layer and/or a source contact layer. The field plate can be coplanar with and/or below a gate runner layer. The gate runner layer is routed away from a region directly above the gate metal layer by a gate bridge, such that the field plate can extend directly above the gate metal layer without being interfered by the gate runner layer. Coplanar with the source runner layer or the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. By vertically overlapping the metal gate layer and the field plate, the disclosed HEMT device may achieve significant size efficiency without additional routings.
Abstract:
Impurity atoms of a first type are implanted through a gate and a thin gate dielectric into a channel region that has substantially only the first type of impurity atoms at a middle point of the channel region to increase the average dopant concentration of the first type of impurity atoms in the channel region to adjust the threshold voltage of a transistor.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
An integrated circuit containing a diode with a drift region containing a first dopant type plus scattering centers. An integrated circuit containing a DEMOS transistor with a drift region containing a first dopant type plus scattering centers. A method for designing an integrated circuit containing a DEMOS transistor with a counter doped drift region.
Abstract:
An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain diffused link, a channel diffused link, and an isolation link which electrically isolated the source, where the isolation diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain diffused link.
Abstract:
An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain diffused link, a channel diffused link, and an isolation link which electrically isolated the source, where the isolation diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain diffused link.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
An integrated circuit containing a first plurality of MOS transistors operating in a low voltage range, and a second plurality of MOS transistors operating in a mid voltage range, may also include a high-voltage MOS transistor which operates in a third voltage range significantly higher than the low and mid voltage ranges, for example 20 to 30 volts. The high-voltage MOS transistor has a closed loop configuration, in which a drain region is surrounded by a gate, which is in turn surrounded by a source region, so that the gate does not overlap field oxide. The integrated circuit may include an n-channel version of the high-voltage MOS transistor and/or a p-channel version of the high-voltage MOS transistor. Implanted regions of the n-channel version and the p-channel version are formed concurrently with implanted regions in the first and second pluralities of MOS transistors.
Abstract:
The density of a transistor array is increased by forming one or more deep trench isolation structures in a semiconductor material. The deep trench isolation structures laterally surround the transistors in the array. The deep trench isolation structures limit the lateral diffusion of dopants and the lateral movement of charge carriers.