-
公开(公告)号:US10793725B2
公开(公告)日:2020-10-06
申请号:US16355531
申请日:2019-03-15
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Raghavan Subasri , Kalidindi Ramachandra Soma Raju , Dendi Sreenivas Reddy
IPC: C07C45/80 , C09D5/08 , C09D5/00 , B05D1/02 , B05D1/18 , B05D3/06 , B05D5/00 , B05D7/14 , C23C26/00
Abstract: A Zn—Al layered double hydroxide (LDH) composition is added to a solution including a corrosion inhibitor and stirred, and a precipitate of the solution is collected, washed, and dried to form a corrosion inhibiting material (CIM), in which the LDH composition is intercalated with the corrosion inhibitor. An inorganic CIM and/or an organic CIM may be formed. The organic CIM may be added to a sol-gel composition to form an organic CIM-containing sol-gel composition, and the inorganic CIM may be added to a sol-gel composition to form an inorganic CIM-containing sol-gel composition. Further, the organic CIM-containing sol-gel composition may be applied on a substrate (e.g., an aluminum alloy substrate) to form an organic CIM-containing sol-gel layer and cured by ultraviolet (UV) radiation, the inorganic CIM-containing sol-gel composition may be applied on the substrate to form an inorganic CIM-containing sol-gel layer and cured by UV radiation, and the sol-gel layers may be thermally cured.
-
公开(公告)号:US10246594B2
公开(公告)日:2019-04-02
申请号:US15231668
申请日:2016-08-08
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Raghavan Subasri , Kalidindi Ramachandra Soma Raju , Dendi Sreenivas Reddy
IPC: C08G63/02 , C09D5/10 , B05D3/06 , C23F11/06 , C23F11/173 , C23C18/12 , C23C22/66 , C23C22/68 , C23C22/83
Abstract: A corrosion-resistant coating on an aluminum-containing substrate such as an aluminum substrate, an aluminum alloy substrate (e.g., AA 2024, AA 6061, or AA7075), or other aluminum-containing substrate includes a corrosion inhibitor-incorporated Zn—Al layered double hydroxide (LDH) layer and a sol-gel layer. A zinc salt and a corrosion inhibitor (e.g., a salt of an oxyanion of a transition metal such as a vanadate) is dissolved to form a zinc-corrosion inhibitor solution, and the substrate is immersed in or otherwise contacted with the solution to form the corrosion inhibitor-incorporated Zn—Al LDH layer on the substrate. A sol-gel composition is applied on the corrosion inhibitor-incorporated Zn—Al LDH layer of the substrate to form a sol-gel layer, and the sol-gel layer is cured.
-
公开(公告)号:US12203190B2
公开(公告)日:2025-01-21
申请号:US16940934
申请日:2020-07-28
Applicant: THE BOEING COMPANY
Inventor: Stephen P. Gaydos , Vijaykumar S. Ijeri , Om Prakash , Trilochan Mishra , Raghuvir Singh , Shashi Kant Tiwari
Abstract: The present disclosure provides electrolyte solutions for electrodeposition of zinc-iron alloys, methods of forming electrolyte solutions, and methods of electrodepositing zinc-iron alloys. An electrolyte solution for electroplating can include an alkali metal citrate, an alkali metal acetate, a citric acid, and glycine with a metal salt. An electrolyte solution can be formed by dissolving an alkali metal citrate, an alkali metal acetate, a citric acid, and glycine in water or an aqueous solution. Electrodepositing zinc-iron alloys on a substrate can include introducing a cathode and an anode into an electrolyte solution comprising an alkali metal citrate, an alkali metal acetate, a citric acid, and glycine. Electrodepositing can further include passing a current between the cathode and the anode through the electrolyte solution to deposit zinc and iron onto the cathode.
-
公开(公告)号:US11826981B2
公开(公告)日:2023-11-28
申请号:US18121125
申请日:2023-03-14
Applicant: THE BOEING COMPANY
Inventor: Stephen P. Gaydos , Vijaykumar S. Ijeri , Om Prakash , Shashi Kant Tiwari , Raghuvir Singh , Sharma Paswan , Lokesh C. Pathak
CPC classification number: B32B15/013 , C25D3/565 , C25D5/10 , C25D5/18 , C25D5/623 , B32B2250/42 , B32B2311/20
Abstract: The present disclosure provides electrolyte solutions for electrodeposition of zinc-manganese alloys, methods of forming electrolyte solutions, methods of electrodepositing zinc-manganese alloys, and multilayered zinc-manganese alloys. An electrolyte solution for electroplating can include a metal salt, boric acid, an alkali metal chloride, polyethylene glycol, and a hydroxy benzaldehyde. An electrolyte solution can be formed by dissolving a metal salt, boric acid, an alkali metal chloride, polyethylene glycol, and a hydroxy benzaldehyde in water or an aqueous solution. Electrodepositing zinc-manganese alloys on a substrate can include introducing a cathode and an anode into an electrolyte solution comprising a metal salt, boric acid, an alkali metal chloride, polyethylene glycol, and a hydroxy benzaldehyde. Electrodepositing can further include passing a current between the cathode and the anode through the electrolyte solution to deposit zinc and manganese onto the cathode.
-
公开(公告)号:US10738199B2
公开(公告)日:2020-08-11
申请号:US16355625
申请日:2019-03-15
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Raghavan Subasri , Kalidindi Ramachandra Soma Raju , Dendi Sreenivas Reddy
IPC: C08G63/02 , C09D5/10 , C23C18/12 , C23C22/66 , C23C22/68 , C23C22/83 , B05D3/06 , C23F11/06 , C23F11/173
Abstract: A corrosion-resistant coating on an aluminum-containing substrate such as an aluminum substrate, an aluminum alloy substrate (e.g., AA 2024, AA 6061, or AA7075), or other aluminum-containing substrate includes a corrosion inhibitor-incorporated Zn—Al layered double hydroxide (LDH) layer and a sol-gel layer. A zinc salt and a corrosion inhibitor (e.g., a salt of an oxyanion of a transition metal such as a vanadate) is dissolved to form a zinc-corrosion inhibitor solution, and the substrate is immersed in or otherwise contacted with the solution to form the corrosion inhibitor-incorporated Zn—Al LDH layer on the substrate. A sol-gel composition is applied on the corrosion inhibitor-incorporated Zn—Al LDH layer of the substrate to form a sol-gel layer, and the sol-gel layer is cured.
-
16.
公开(公告)号:US10577686B2
公开(公告)日:2020-03-03
申请号:US15678757
申请日:2017-08-16
Applicant: THE BOEING COMPANY
Inventor: Stephen P. Gaydos , Vijaykumar S. Ijeri , Om Prakash , Suman K. Mishra , Raghuvir Singh , Sharma Paswan , Lokesh C. Pathak
IPC: C23C14/35 , C23C14/16 , C22C21/10 , C23C14/34 , C22C21/06 , C22C21/16 , H01J37/34 , C22C21/00 , C22F1/04
Abstract: The present disclosure provides alloys for coating a steel substrate, the alloys comprising aluminum and one or more of zinc, magnesium, and zirconium. The alloy coatings have a percent total pore volume of about 5% or less and an average pore diameter about 10 microns or less. The present disclosure further provides methods of depositing aluminum alloy onto a substrate, magnetron sputtering targets, and methods for making coated steel.
-
公开(公告)号:US20190160735A1
公开(公告)日:2019-05-30
申请号:US15827781
申请日:2017-11-30
Applicant: The Boeing Company
Inventor: Om Prakash , Nishant K. Sinha , Vijaykumar S. Ijeri
IPC: B29C64/147 , B29C64/393 , B29C64/268 , B33Y10/00 , B33Y30/00 , B33Y50/02 , B23K26/21 , B23K26/364
Abstract: A method of fabricating a part includes stacking sheets of fusible material to form a stack. The method also includes directing a laser beam through at least one sheet of the stack. The method also includes transferring energy from the laser beam to multiple locations on at least one interface between adjacent sheets of the stack, according to a predetermined pattern corresponding with a design of the part, to form corresponding multiple molten regions. The molten regions are conjoined together to form a fused portion of the adjacent sheets. The fused portion of the adjacent sheets defines the part.
-
公开(公告)号:US10246593B2
公开(公告)日:2019-04-02
申请号:US15231654
申请日:2016-08-08
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Raghavan Subasri , Kalidindi Ramachandra Soma Raju , Dendi Sreenivas Reddy
IPC: C08G63/02 , C09D5/08 , B05D1/02 , B05D1/18 , B05D3/06 , B05D5/00 , B05D7/14 , C23C26/00 , C09D5/00
Abstract: A Zn—Al layered double hydroxide (LDH) composition is added to a solution including a corrosion inhibitor and stirred, and a precipitate of the solution is collected, washed, and dried to form a corrosion inhibiting material (CIM), in which the LDH composition is intercalated with the corrosion inhibitor. An inorganic CIM and/or an organic CIM may be formed. The organic CIM may be added to a sol-gel composition to form an organic CIM-containing sol-gel composition, and the inorganic CIM may be added to a sol-gel composition to form an inorganic CIM-containing sol-gel composition. Further, the organic CIM-containing sol-gel composition may be applied on a substrate (e.g., an aluminum alloy substrate) to form an organic CIM-containing sol-gel layer and cured by ultraviolet (UV) radiation, the inorganic CIM-containing sol-gel composition may be applied on the substrate to form an inorganic CIM-containing sol-gel layer and cured by UV radiation, and the sol-gel layers may be thermally cured.
-
公开(公告)号:US20180194949A1
公开(公告)日:2018-07-12
申请号:US15431506
申请日:2017-02-13
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Om Prakash , Stephen P. Gaydos , Raghavan Subasri , Kalidindi Ramachandra Soma Raju , Dendi Sreenivas Reddy
IPC: C09D5/08 , C09D183/08 , C09D5/10 , C23C18/12
Abstract: A layered tetravalent metal phosphate composition (e.g., a layered zirconium phosphate composition) and a first corrosion inhibitor (e.g., cerium (III), a vanadate, a molybdate, a tungstate, a manganous, a manganate, a permanganate, an aluminate, a phosphonate, a thiazole, a triazole, and/or an imidazole) is dispersed in an aqueous solution and stirred to form a first solution. A precipitate of the first solution is collected and washed to form a first corrosion inhibiting material (CIM), which includes the first corrosion inhibitor intercalated in the layered tetravalent metal phosphate composition. The first CIM is added to a first sol-gel composition to form a first CIM-containing sol-gel composition. The first CIM-containing sol-gel composition is applied on a substrate to form a CIM-containing sol-gel layer, cured by UV radiation, and thermally cured to form a corrosion-resistant coating. One or more additional sol-gel composition may be applied on the substrate.
-
公开(公告)号:US11976216B2
公开(公告)日:2024-05-07
申请号:US17453789
申请日:2021-11-05
Applicant: The Boeing Company
Inventor: Vijaykumar S. Ijeri , Stephen P. Gaydos , Patrick J. Kinlen , Priyanka G. Dhirde , Anand Khanna
CPC classification number: C09D5/24 , C09D5/08 , C09D7/61 , C09D163/00 , H01B1/04 , C01B32/19 , C08K3/013 , C08K3/042
Abstract: An electrically conductive and corrosion resistant graphene-based coating composition, including a binder, high-pressure airless-sprayed expanded graphene stacks, carbon fibers, and a dispersing agent, wherein the graphene-based coating composition has an electrical conductivity of at least 2 S/cm and a pull-off adhesion of at least 2 MPa.
-
-
-
-
-
-
-
-
-