Abstract:
Methods for purifying steviol glycosides, including Rebaudioside X, are provided herein. Sweetener and sweetened containing Rebaudioside X are also provided herein. Methods of improving the flavor and/or temporal profile of sweetenable compositions, such as beverages, are also provided.
Abstract:
The present invention relates generally to steviol glycosides, as well as compositions comprising such steviol glycosides. The present invention further extends to methods of preparing and purifying such steviol glycosides and methods for enhancing the flavor or sweetness of consumables using these steviol glycosides and compositions. The present invention extends to consumables comprising steviol glycosides, where the such steviol glycosides are present in a concentration at or below their sweetness recognition threshold, and wherein such steviol glycosides enhance the sweetness of the consumable.
Abstract:
The present invention relates generally to steviol glycosides, as well as compositions comprising such steviol glycosides. The present invention further extends to methods of preparing and purifying such steviol glycosides and methods for enhancing the flavor or sweetness of consumables using these steviol glycosides and compositions. The present invention extends to consumables comprising steviol glycosides, where the such steviol glycosides are present in a concentration at or below their sweetness recognition threshold, and wherein such steviol glycosides enhance the sweetness of the consumable.
Abstract:
Disclosed herein are sweetener compositions comprising at least one sweetener and at least one sweetness enhancer chosen from terpenes (such as sesquiterpenes, diterpenes, and triterpenes), flavonoids, amino acids, proteins, polyols, other known natural sweeteners (such as cinnamaldehydes, selligueians, hematoxylins), secodammarane glycosides, and analogues thereof, wherein the at least one sweetness enhancer is present in the composition in an amount at or below the sweetness detection threshold level of the sweetness ehancer, and the at least one sweetener and the at least one sweetness enhancer are different. Also disclosed herein are methods for enhancing sweetness of a composition, comprising combining at least one sweetener and at least one sweetness enhancer chosen from terpenes (such as sesquiterpenes, diterpenes, and triterpenes), flavonoids, amino acids, proteins, polyols, other known natural sweeteners (such as cinnamaldehydes, selligueians, hematoxylins), secodammarane glycosides, and analogues thereof, wherein the at least one sweetness enhancer is present in the composition in an amount at or below the sweetness detection threshold level of the at least one sweetness enhancer, and the at least one sweetener and the at least one sweetness enhancer are different.
Abstract:
The present invention relates generally to steviol glycosides, as well as compositions comprising such steviol glycosides. The present invention further extends to methods of preparing and purifying such steviol glycosides and methods for enhancing the flavor or sweetness of consumables using these steviol glycosides and compositions. The present invention extends to consumables comprising steviol glycosides, where the such steviol glycosides are present in a concentration at or below their sweetness recognition threshold, and wherein such steviol glycosides enhance the sweetness of the consumable.
Abstract:
Novel glucosylated steviol glycosides and their purification are provided herein. In addition, compositions comprising said novel glucosylated steviol glycosides and methods of preparing and using the same are provided.
Abstract:
Methods for purifying steviol glycosides, including Rebaudioside X, are provided herein. Sweetener and sweetened containing Rebaudioside X are also provided herein. Methods of improving the flavor and/or temporal profile of sweetenable compositions, such as beverages, are also provided.
Abstract:
Methods or preparing para-xylene from biomass by carrying out a Diels-Alder cycloaddition at controlled temperatures and activity ratios. Methods of preparing bio-terephthalic acid and bio-poly(ethylene terephthalate (bio-PET) are also disclosed, as well as products formed from bio-PET.