摘要:
An optical link module of the present invention for connecting light beams by deflection and including light-emitting devices arranged in a planar manner; an optical fiber bundle that is an optical waveguide for receiving the light beams from the light-emitting devices, and an optical turn which includes a plurality of aspherical lenses which are disposed between the light-emitting devices and the optical fiber bundle and are formed while corresponding to the number of the light-emitting devices and the number of optical fibers.
摘要:
A radiographic phosphor screen to be used as an intensifying screen, a direct viewing fluorescent screen, an input screen of an image intensifier tube for radiography and the like, which comprises a substrate and, supported thereon, a phosphor represented by the following general formula:M(P.sub.x, V.sub.1.sub.-x)0.sub.4wherein M stands for at least one element selected from the group consisting of yttrium (Y), lanthanum (La), gadolium (Gd) and lutetium (Lu) and x is a number of from 0.7 to 0.99,Or a phosphate formed by activating said phosphor with 0.01 to 0.5 mole % of thulium (Tm).
摘要:
An optical link module of the present invention for connecting light beams by deflection and including light-emitting devices arranged in a planar manner; an optical fiber bundle that is an optical waveguide for receiving the light beams from the light-emitting devices, and an optical turn which includes a plurality of aspherical lenses which are disposed between the light-emitting devices and the optical fiber bundle and are formed while corresponding to the number of the light-emitting devices and the number of optical fibers.
摘要:
An optical link module of the present invention for connecting light beams by deflection and including light-emitting devices arranged in a planar manner; an optical fiber bundle that is an optical waveguide for receiving the light beams from the light-emitting devices, and an optical turn which includes a plurality of aspherical lenses which are disposed between the light-emitting devices and the optical fiber bundle and are formed while corresponding to the number of the light-emitting devices and the number of optical fibers.
摘要:
Provided is an optical transmission substrate including: a first substrate; an optical waveguide which has clad covering a core and a periphery of the core and extends on an upper surface of the first substrate; a second substrate provided parallel to the first substrate so that a lower surface thereof contacts an upper surface of the optical waveguide; a reflection surface which is provided on a cross section of the core at an end of the optical waveguide and reflects light, which travels through the core of the optical waveguide, toward the second substrate; and a light guide which is provided in the second substrate and guides the light, which is reflected toward the second substrate, toward an upper surface of the second substrate from a position closer to the core than an upper surface of the clad.
摘要:
The present invention is the use of coupled quantum wells in the active region of a semiconductor laser to modulate the frequency and amplitude of the light output of the laser. In a particular embodiment of the present invention the coupled quantum wells are contained in a graded index of refraction semiconductor double heterostructure laser. The active region of this tunable laser consists of two quantum wells having a width of approximately 50 Angstroms or less which are separated by a barrier layer having a width of approximately 20 Angstroms or less. The quantum well material is intrinsic GaAs and the barrier layer is Al.sub.x Ga.sub.1-x As wherein x=0.23. The active region is surrounded by the double heterostructure in which one side is doped p-type and the second side is doped n-type. The resulting laser is a p-i-n type structure. A reverse bias with respect to the flat band voltage of the p-i-n structure is applied across the p-i-n structure which modulates both the frequency and the intensity of the laser output. The tunable laser is pumped with a variety of conventional means, including both electrical and optical pumping. The modulation of the wavelength is approximately linear over a 1.5 volt operating range. A tunable laser, such as the present invention, having an output wavelength modulated by an electric field is useful in the field of optical communications and computing.
摘要翻译:本发明是在半导体激光器的有源区域中使用耦合量子阱来调制激光器的光输出的频率和幅度。 在本发明的特定实施例中,耦合的量子阱包含在渐变折射率半导体双异质结构激光器中。 该可调谐激光器的有源区域由宽度约为50埃或更小的两个量子阱组成,该量子阱由宽度约为20埃或更小的阻挡层隔开。 量子阱材料是本征GaAs,势垒层是Al x Ga 1-x As,其中x = 0.23。 有源区被双异质结构包围,其中一侧掺杂p型,第二面掺杂n型。 所得到的激光器是p-i-n型结构。 相对于p-i-n结构的平带电压的反向偏压被施加在p-i-n结构上,该p-i-n结构调制激光输出的频率和强度。 可调谐激光器以各种常规手段进行泵送,包括电泵浦和光泵浦。 在1.5伏工作范围内,波长的调制近似线性。 具有由电场调制的输出波长的本发明的可调谐激光器在光通信和计算领域是有用的。
摘要:
Disclosed is a new method suitable for making highly integrated quantum wire arrays, quantum dot arrays in a single crystal compound semiconductor and FETs of less than 0.1 micron gate length. This makes it possible to construct a high-performance electronic device with high speed and low power consumption, using a combination of low-temperature-growth molecular beam epitaxy (LTG-MBE) and focused ion beam (FIB) implantation. The compound semiconductor (GaAs) epitaxial layers, which are made by LTG-MBE, are used as targets of Ga FIB implantation to make Ga wire or dot arrays. Precipitation of arsenic microcrystals, which are initially embedded in a single crystal GaAs layer and act as Schottky barriers, are typically observed in an LTG GaAs layer. A thermal annealing process, after implantation, changes the arsenic microcrystals to GaAs crystals if the arsenic microcrystals are in the region in which the Ga ions are implanted. A wire-like shape free of As microcrystals then acts as a quantum wire for electrons or holes whereas a dot-like shape free of As microcrystals acts as a quantum dot. The co-existence of Ga ions and dopant ions, which provides conductivity type carriers opposite to the conductivity type of the majority carriers of a channel region of an FET, provides the fabrication of very narrow junction gate region for any FET.
摘要:
An apparatus for changing the direction of an optical beam comprises a thin film grating deflector; an optical energy source for providing optical energy to strike the deflector at a first angle with respect to gratings of the deflector and to exit the deflector at a second angle with respect to the gratings; and elements for applying a voltage to the deflector to vary the second angle. The optical energy source preferably comprises a laser diode; and a collimator for coupling energy from the laser diode to the grating deflector. The grating deflector is a planar waveguide including a plurality of stacked quantum wells formed of GaAs separated by barriers of AlGaAs. Optical energy provided to the grating deflector in a first direction is deflected in a second direction. These directions define a plane in which the waveguide is disposed. The quantum wells are stacked in a direction perpendicular to a plane of the waveguide. The optical energy source, the thin film grating deflector, the voltage applying elements and the collimator may be integrated into a single chip.
摘要:
The present invention relates to a semiconductor laser which oscillates in a single longitudinal mode and with a low threshold current and which exhibits a good mode stability against reflected light, and provides a structure of a distributed feedback semiconductor laser with modulation for a gain. The structure is such that gain producing regions are periodically arranged and that a substance transparent to laser radiation is buried between the regions. A layer including the gain regions is formed of a superlattice layer, and an impurity is diffused or implanted into periodic positions of the layer, whereby the transparent regions and the gain regions with little lattice damages can be readily formed.
摘要:
An optical link module of the present invention for connecting light beams by deflection and including light-emitting devices arranged in a planar manner; an optical fiber bundle that is an optical waveguide for receiving the light beams from the light-emitting devices, and an optical turn which includes a plurality of aspherical lenses which are disposed between the light-emitting devices and the optical fiber bundle and are formed while corresponding to the number of the light-emitting devices and the number of optical fibers.