Abstract:
To improve problems with on-state current and off-state current of thin film transistors, a thin film transistor includes a pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added, provided with a space therebetween; a conductive layer which is overlapped, over the gate insulating layer, with the gate electrode and one of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added; and an amorphous semiconductor layer which is provided successively between the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added in such a manner that the amorphous semiconductor layer extends over the gate insulating layer from the conductive layer and is in contact with both of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added.
Abstract:
A microcrystalline semiconductor film with high crystallinity is manufactured. In addition, a thin film transistor with excellent electric characteristics and high reliability, and a display device including the thin film transistor are manufactured with high productivity. A deposition gas containing silicon or germanium is introduced from an electrode including a plurality of projecting portions provided in a treatment chamber of a plasma CVD apparatus, glow discharge is caused by supplying high-frequency power, and thereby crystal particles are formed over a substrate, and a microcrystalline semiconductor film is formed over the crystal particles by a plasma CVD method.
Abstract:
To provide a cleaning apparatus suitable for removing clogging substances trapped in a surface layer of a sand filtration layer. A cleaning apparatus equipped with drive wheels serving as a driving device configured to move across a surface of a sand filtration layer. A pump and a jet nozzle are provided as an agitation device configured to agitate a surface layer portion of the sand filtration layer only at a desired depth, and which blows the clogging substances upward into the seawater in a turbid water intake pit together with a filtration sand. A perforated pipe for suctioning turbid water, a pump, an ejector, and a discharge pipe for dilute turbid water are provided as a suction and discharge device configured to suction turbid water blown upward into seawater in the water intake pit by the agitation device, and discharge it to outside of the turbid water intake pit. Prevents clogging by performing a timely cleaning of the sand filtration layer, thereby making it possible to maintain a high-speed seawater infiltration rate for seawater. Impact on the surrounding environment is reduced, because the apparatus suctions turbid water containing clogging substances which is blown upward into the turbid water intake pit, and discharges it to outside of the system.
Abstract:
A structure of the plasma treatment apparatus is employed in which an upper electrode has projected portions provided with first introduction holes and recessed portions provided with second introduction holes, the first introduction hole of the upper electrode is connected to a first cylinder filled with a gas which is not likely to be dissociated, the second introduction hole is connected to a second cylinder filled with a gas which is likely to be dissociated, the gas which is not likely to be dissociated is introduced into a reaction chamber from an introduction port of the first introduction hole provided on a surface of the projected portion of the upper electrode, and the gas which is likely to be dissociated is introduced into the reaction chamber from an introduction port of the second introduction hole provided on a surface of the recessed portion.
Abstract:
An object is to manufacture a semiconductor device including an oxide semiconductor film, which has stable electric characteristics and high reliability. A crystalline oxide semiconductor film is formed, without performing a plurality of steps, as follows: by utilizing a difference in atomic weight of plural kinds of atoms included in an oxide semiconductor target, zinc with low atomic weight is preferentially deposited on an oxide insulating film to form a seed crystal including zinc; and tin, indium, or the like with high atomic weight is deposited on the seed crystal while causing crystal growth. Further, a crystalline oxide semiconductor film is formed by causing crystal growth using a seed crystal with a hexagonal crystal structure including zinc as a nucleus, whereby a single crystal oxide semiconductor film or a substantially single crystal oxide semiconductor film is formed.
Abstract:
An object is to provide a semiconductor device having a memory which can efficiently improve a yield by employing a structure which facilitates the use of a spare memory cell. The semiconductor device includes a memory cell array having a memory cell and a spare memory cell, a decoder connected to the memory cell and the spare memory cell, a data holding circuit connected to the decoder, and a battery which supplies electric power to the data holding circuit. The spare memory cell operates in accordance with an output from the data holding circuit.
Abstract:
An object is to provide an n-channel transistor and a p-channel transistor having a preferred structure using an oxide semiconductor. A first source or drain electrode which is electrically connected to a first oxide semiconductor layer and is formed using a stacked-layer structure including a first conductive layer containing a first material and a second conductive layer containing a second material, and a second source or drain electrode which is electrically connected to a second oxide semiconductor layer and is formed using a stacked-layer structure including a third conductive layer containing the first material and a fourth conductive layer containing the second material are included. The first oxide semiconductor layer is in contact with the first conductive layer of the first source or drain electrode, and the second oxide semiconductor layer is in contact with the third and the fourth conductive layers of the second source or drain electrode.
Abstract:
To improve problems with on-state current and off-state current of thin film transistors, a thin film transistor includes a pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added, provided with a space therebetween; a conductive layer which is overlapped, over the gate insulating layer, with the gate electrode and one of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added; and an amorphous semiconductor layer which is provided successively between the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added in such a manner that the amorphous semiconductor layer extends over the gate insulating layer from the conductive layer and is in contact with both of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added.
Abstract:
An information processing system includes circuitry configured to acquire audio information used for operating a target apparatus, recognize content of the acquired audio information as a recognition result, determine whether the recognition result includes a specific keyword, notify, using a display, pre-defined specific operation when the recognition result includes the specific keyword, and output the specific operation information to the target apparatus.
Abstract:
Each device includes: a processing-information-request transmitter configured to transmit a processing information request containing device identification information identifying the device, to an information processing apparatus based on detection of a mobile terminal; a first processing-information receiver configured to receive processing information from the information processing apparatus; and a first processing-information transmitter configured to transmit the processing information to the mobile terminal. The information processing apparatus includes: a processing-information-request receiver configured to receive the processing information request from each device; a second processing-information transmitter configured to retrieve processing information associated with the device identification information contained in the processing information request and transmit the processing information to the device of the transmission source. The mobile terminal includes a processing unit configured to execute predetermined processing which is made executable if a plurality of pieces of processing information are received from the plurality of devices.