摘要:
A method for manufacturing a power module substrate, includes: preparing a ceramics substrate and a metal plate made of pure aluminum; a fusion step in which the ceramics substrate and the metal plate are stacked in layers with a brazing filler metal interposed therebetween, and a fused aluminum layer is formed at an interface between the ceramics substrate and the metal plate by fusing the brazing filler metal which is caused by heating; and a solidifying step in which the fused aluminum layer is solidified by cooling, and a crystal is grown so as to be arranged in a crystal orientation of the metal plate when the fused aluminum layer is solidified.
摘要:
A method for manufacturing a power module substrate, includes: preparing a ceramics substrate and a metal plate made of pure aluminum; a fusion step in which the ceramics substrate and the metal plate are stacked in layers with a brazing filler metal interposed therebetween, and a fused aluminum layer is formed at an interface between the ceramics substrate and the metal plate by fusing the brazing filler metal which is caused by heating; and a solidifying step in which the fused aluminum layer is solidified by cooling, and a crystal is grown so as to be arranged in a crystal orientation of the metal plate when the fused aluminum layer is solidified.
摘要:
A circuit board including conductive layers bonded to both surfaces of an insulating ceramic substrate, with a brazing material disposed therebetween. The conductive layers comprise at least 99.98% by mass of aluminum, and display an average crystal grain diameter within a range from 0.5 mm to 5 mm and a standard deviation σ for that crystal grain diameter of no more than 2 mm. Each conductive layer comprises at least 20 ppm of Cu, Fe and Si. The surface area of the crystal with the maximum crystal grain diameter within the conductive layers accounts for no more than 15% of the surface area of the insulating ceramic substrate.
摘要:
A circuit board including conductive layers bonded to both surfaces of an insulating ceramic substrate, with a brazing material disposed therebetween. The conductive layers comprise at least 99.98% by mass of aluminum, and display an average crystal grain diameter within a range from 0.5 mm to 5 mm and a standard deviation σ for that crystal grain diameter of no more than 2 mm. Each conductive layer comprises at least 20 ppm of Cu, Fe and Si. The surface area of the crystal with the maximum crystal grain diameter within the conductive layers accounts for no more than 15% of the surface area of the insulating ceramic substrate.
摘要:
A process for providing a power module substrate. A brazing sheet is temporarily fixed on a surface of a ceramic substrate by surface tension of a volatile organic medium, and a conductive pattern member punched from a base material is temporarily fixed on a surface of the brazing sheet by surface tension. These are heated so as to volatilize the volatile organic medium, and a pressure is applied to the conductive pattern member in its thickness direction. The brazing sheet is then melted to join the conductive pattern member with the surface of the ceramics substrate.
摘要:
A high-efficiency production method for a power module substrate with reduced line width of a conductive pattern provides an insulation substrate suitable for realizing a large current and a high voltage of a power module. According to the method, a brazing sheet is temporarily fixed on a first surface of a ceramics substrate by surface tension of a volatile organic liquid. The brazing sheet is also temporarily fixed on the first surface of a conductive pattern member punched from a base material by surface tension of same type of volatile organic liquid. The brazing sheet and the conductive pattern member are heated so as to volatilize the volatile organic liquid and a pressure is applied to the conductive pattern member in its thickness direction. The brazing sheet is melted to join the conductive pattern member with the first surface of the ceramics substrate.
摘要:
A process for providing a power module substrate. A brazing sheet is temporarily fixed on a surface of a ceramic substrate by surface tension of a volatile organic medium, and a conductive pattern member punched from a base material is temporarily fixed on a surface of the brazing sheet by surface tension. These are heated so as to volatilize the volatile organic medium, and a pressure is applied to the conductive pattern member in its thickness direction. The brazing sheet is then melted to join the conductive pattern member with the surface of the ceramics substrate.
摘要:
High-efficiency production of a power module substrate and reduction of the line width of a conductive pattern, and to provide an insulation substrate suitable for realizing a large current and a high voltage of a power module. A brazing sheet is temporarily fixed on a surface of a ceramics substrate by surface tension of a volatile organic medium, and a conductive pattern member punched from a base material is temporarily fixed on a surface of the brazing sheet by surface tension. These are heated so as to volatilize the volatile organic medium and a pressure is applied to the conductive pattern member in its thickness direction. The brazing sheet is melted to join the conductive pattern member with the surface of the ceramics substrate.
摘要:
A ceramic circuit board with a heat sink which has a long life under heat cycles. First and second aluminum plates are laminated and bonded onto both sides of a ceramic substrate through Al--Si-based brazing solders, respectively. A heat sink formed of an AlSiC-based composite material is laminated and bonded onto a surface of the first aluminum plate. The ceramic substrate is formed of AlN, Si.sub.3 N.sub.4 or Al.sub.2 O.sub.3. An Al alloy in the heat sink has an Al purity of 80-99% by weight, and the first or second aluminum plate has an Al purity not less than 99.98% by weight. The heat sink is laminated and bonded onto the first aluminum plate through the Al alloy in the heat sink.
摘要:
A USB hub according to an embodiment of the invention includes: a USB upstream port unit for inputting/outputting data in accordance with a USB protocol; a wireless upstream port unit for inputting/outputting data in accordance with a predetermined wireless communication protocol; a USB downstream port unit including at least one input/output port for inputting/outputting data in accordance with the USB protocol; a port selector for selection between the USB upstream port unit and the wireless upstream port unit to be connected with the input/output port; and a communication protocol converting unit provided on a connection path between the wireless upstream port unit and the port selector and converting the USB protocol and the wireless communication protocol.