摘要:
A method and an apparatus for fabricating a thin film semiconductor device are disclosed. An a-Si:H thin film produced on a wafer is melting-recrystallized by irradiating a laser beam to it in a laser annealing chamber to produce a polycrystalline Si thin film. The wafer is then transported to a CVD chamber without exposing it to the outside air. A gate insulating film is produced on a clean surface of the polycrystalline Si thin film in the CVD chamber. In another case, an a-Si:H thin film is melting-recrystallized in the laser annealing chamber to produce a polycrystalline Si thin film and then the wafer is transported to a hydrogenating chamber without exposing it to the outside air. Thereafter the polycrystalline Si thin film is plasma hydrogenated in the hydrogenating chamber. The method and apparatus can fabricate thin film semiconductor devices having a high performance and a high reliability with a good uniformity by making a clean and high quality semiconductor/insulator interface or by hydrogenating a semiconductor thin film without changes in electrical conductivity.
摘要:
The present invention relates to a method of heat-treating a semiconductor, and the object is to enable heat-treating to a semiconductor or semiconductor device in a short period time and to obtain a stable and high reforming effect. The present invention is a method in which carbon or a layer including carbon is provided as a light absorbing layer, and a semiconductor material as a heat-treating target layer or semiconductor device contacting the heat absorbing layer directly or through a heat transfer layer of 5 nm-100 μm in thickness is heat-treated, and the light source to be used is a semiconductor laser light of wavelength of 600 nm-2 μm, and this semiconductor laser light is caused to continuously irradiate and sweep the surface of the heat-treating target material. The light source can be easily made to output high power, and heat-treating at a high speed and with low energy consumption is realized.
摘要:
To provide a small and lightweight optical switching element with a simple structure capable of fast response, and an optical switching apparatus employing the optical switching element. Optical extraction unit contacts an upper substrate with electrostatic attraction generated between a transparent electrode of the optical extraction unit and a transparent electrode of the upper substrate. In the case that light enters one V-shaped trench of the upper substrate vertically, the light enters the optical extraction unit of the upper substrate and is emitted from a back of the optical extraction unit (a tapered unit). Subsequently, the incident light P1 passes through a lower substrate and is converted into transmission light. With electrostatic attraction generated between a transparent electrode of the lower substrate and a transparent electrode of the optical extraction unit, the optical extraction unit is attracted to a lower substrate side. In this state, the incident light is caused the total reflection at a total reflection face. This total reflection light is emitted from the other V-shaped trench. The incident light can be switched in two ways: the transmission light and the total reflection light.
摘要:
This invention provides a cooler having an excellent cooling performance, which is capable of being downsized and low-profiled, an electronic apparatus and a method for fabricating the cooler. The cooler (1) comprises lower board member (10) and upper complex board members. The lower board member (10) is made from plastic material and has a cavity portion (11) for allowing water or vapor to be circulated therein. The upper complex board members comprise board member (20) for a condenser part, upper board member (30), and board member (40) for a wick part. The board members (20) and (40) for the condenser part and the wick part, respectively, are made from metallic material having higher thermal conductivity such as copper and nickel. Each of the members has a groove for allowing them to be served as the condenser and the wick. The upper board member (30) includes an opening (32) or (34) for allowing the board member (20) or (40) for the condenser part or the wick part to be incorporated, and a hollow (31) for heat insulation.
摘要:
An active-matrix-type display apparatus ensuring sufficient luminous intensity of display devices within a display plane and allowing improved display properties is provided. Such display apparatus having of a plurality of pixels comprises a lower electrode formed on a substrate; organic layers formed on the lower electrode; and an upper common electrode formed on the organic layers; in which a plurality of the pixels are partitioned by a rib larger in the thickness than the organic layers and having at least a conductive material layer; and the conductive material layer is electrically connected to the upper common electrode.
摘要:
The present invention provides a method of manufacturing a semiconductor device in which a thinned substrate of a semiconductor or semiconductor device is handled without cracks in the substrate and treated with heat to improve a contact between semiconductor back surface and metal in a high yield and a semiconductor device may be manufactured in a high yield. In the method of manufacturing a semiconductor device according to the present invention, a notched part is formed from a surface to a middle in a semiconductor substrate by dicing and the surface of the substrate is fixed to a support base. Next, a back surface of the substrate is ground to thin the semiconductor substrate and then a metal electrode and a carbon film that is a heat receiving layer are sequentially formed on the back surface of the substrate. Next, the carbon film is irradiated with light at a power density of 1 kW/cm2 to 1 MW/cm2 for a short time of 0.01 ms to 10 ms to transfer heat from the carbon film and alloy an interface between a semiconductor and the metal electrode. Subsequently, the semiconductor substrate is separated at the notched part into pieces.
摘要翻译:本发明提供一种制造半导体器件的方法,其中半导体或半导体器件的薄化衬底在衬底中被处理而没有裂纹并且被热处理以高产率地改善半导体背表面和金属之间的接触,并且半导体 装置可以以高产量制造。 在根据本发明的半导体器件的制造方法中,通过切割从半导体衬底的表面到中间形成切口部分,并且将衬底的表面固定到支撑基底。 接下来,将衬底的背面研磨以使半导体衬底细化,然后在衬底的背面依次形成金属电极和作为受热层的碳膜。 接下来,以1kW / cm 2至1MW / cm 2的功率密度的光以0.01ms至10ms的短时间照射碳膜,以从碳膜转移热量并使合金在半导体和金属之间的界面 电极。 随后,将半导体衬底在切口部分分成多个。
摘要:
First image data including a first pixel value according to the intensity of background light is obtained by means of only exposure. Second image data including a second pixel value according to the intensity of the light reflected or scattered by an object is obtained by so controlling light emission and exposure as to receive part of the reflected or scattered light over the whole exposure period. The part of the reflected or scattered light corresponds to the flat period of emitted pulsed light. Third image data including a third pixel value according to the distance to the object is obtained by so controlling light emission and exposure as to receive the part of the reflected or scattered light for a time according to the distance. The first pixel value is subtracted from each of the second and third pixel values so that the influence of the background light can be excluded. The ratio between the subtraction results is calculated so that the influences of factors that vary the intensity of the reflected or scattered light can be cancelled.
摘要:
A photo detecting device includes an output line leading to a processing circuit, and an array of pixels including respective photo detecting zones for changing incident light into corresponding electric signals through photoelectric conversion. Each of the pixels includes a first switch for selectively connecting and disconnecting a related photo detecting zone to and from the output line, and a second switch for selectively connecting and disconnecting the related photo detecting zone to and from a ground line. The second switch disconnects the related photo detecting zone from the ground line when the first switch connects the related photo detecting zone to the output line. The second switch connects the related photo detecting zone to the ground line when the first switch disconnects the related photo detecting zone from the output line.
摘要:
The present invention provides a method of manufacturing an organic EL display capable of decreasing the resistance of scanning-side electrodes, and improving the efficiency of utilization of light emitted in organic layers. In the manufacturing method, stripe first electrodes made of a transparent conductive material are formed in parallel on a transparent substrate, and then an insulation layer is formed on the transparent substrate with the apertures formed above the first electrodes. An organic film 24 composed of a film of an organic luminescent material, a second electrode material film and a protecting film is laminated in this order on the transparent substrate to cover the insulation layer, and then independent island resist patterns are formed on the protecting film. Then, a laminated film composed of the organic film, the second electrode material film and the protecting film is etched using the resist patterns as a mask to pattern independent island laminations each composed of an organic layer, a second electrode, and a protecting layer.
摘要:
Provided is a photoelectric element that includes an electron transport layer having excellent electron transport properties and a sufficiently large reaction interface and has low resistance loss and excellent conversion efficiency between light and electricity. The photoelectric element includes a first electrode 3, a second electrode 4, an electron transport layer 1 and a hole transport layer 5 interposed between the first electrode 3 and the second electrode 4, an electrolyte solution, and a sensitizing dye. The electron transport layer 1 includes an organic compound having an oxidation-reduction site capable of repeated oxidation-reduction. The electrolyte solution serves to stabilize a reduction state of the oxidation-reduction site. The organic compound and the electrolyte solution form a gel layer 2. The sensitizing dye is provided in contact with the electron transport layer 1. The hole transport layer 5 contains a charge transporter serving to reduce an oxidized form of the sensitizing dye and having a number average molecular weight of 2,000 or more and 100,000 or less.