Abstract:
An epitaxial process applying light illumination includes the following steps. A substrate is provided. A dry etching process and a wet etching process are performed to form a recess in the substrate, wherein an infrared light illuminates while the wet etching process is performed. An epitaxial structure is formed in the recess.
Abstract:
A method for manufacturing semiconductor devices includes following steps. A substrate including a first gate structure and a second gate structure formed thereon is provided. The first gate structure and the second gate structure are complementary to each other. Next, a first mask layer covering the second gate structure is formed and followed by forming first recesses in the substrate at two respective sides of the first transistor. Then, forming the first recesses, a first epitaxial layer is formed in each first recess. After forming the first epitaxial layers, a local protecting cap is formed on the first epitaxial layers and followed by removing the first mask layer.
Abstract:
The present invention provides a method for forming a semiconductor structure, comprising: firstly, a substrate is provided, next, a first dry etching process is performed, to form a recess in the substrate. Afterwards, an ion implantation process is performed to a bottom surface of the recess, a wet etching process is then performed, to etch partial sidewalls of the recess, so as to form at least two tips on two sides of the recess respectively, and a second dry etching process is performed, to etch partial bottom surface of the recess, wherein after the second dry etching process is performed, a lower portion of the recess has a U-shaped cross section profile.
Abstract:
A cleaning process for oxide includes the following step. A substrate having a first area and a second area is provided. A first oxide layer is formed on the substrate of the first area and the second area. An ammonium hydroxide (NH4OH) and hydrogen peroxide (H2O2) containing process is performed on the first oxide layer of the first area and the second area. A photoresist layer covers the first oxide layer of the first area while exposing the first oxide layer of the second area. The first oxide layer of the second area is removed. The photoresist layer is then removed.
Abstract:
A method for manufacturing semiconductor devices includes following steps. A substrate including a first gate structure and a second gate structure formed thereon is provided. The first gate structure and the second gate structure are complementary to each other. Next, a first mask layer covering the second gate structure is formed and followed by forming first recesses in the substrate at two respective sides of the first transistor. Then, forming the first recesses, a first epitaxial layer is formed in each first recess. After forming the first epitaxial layers, a local protecting cap is formed on the first epitaxial layers and followed by removing the first mask layer.
Abstract:
The present invention provides a semiconductor structure, which includes a substrate, at least two gate structures disposed on the substrate, a first recess, disposed in the substrate between two gate structures, the first recess having a U-shaped cross section profile, and a second recess, disposed on the first recess, the second recess having a polygonal shaped cross section profile, and has at least two tips on two sides of the second recess, the first recess and the second recess forming an epitaxial recess.
Abstract:
An epitaxial process applying light illumination includes the following steps. A substrate is provided. A dry etching process and a wet etching process are performed to form a recess in the substrate, wherein an infrared light illuminates while the wet etching process is performed. An epitaxial structure is formed in the recess.
Abstract:
A semiconductor structure including a substrate and a gate structure disposed on the substrate is disclosed. The gate structure includes a gate dielectric layer disposed on the substrate, a gate material layer disposed on the gate dielectric layer and an outer spacer with a rectangular cross section. The top surface of the outer spacer is lower than the top surface of the gate material layer.