Abstract:
A method of fabricating a buried word line structure includes providing a substrate with a word line trench therein. Two source/drain doped regions are disposed in the substrate at two sides of the word line trench. Later, a silicon oxide layer is formed to cover the word line trench. A titanium nitride layer is formed to cover the silicon oxide layer. Next, a tilt ion implantation process is performed to implant silicon atoms into the titanium nitride layer to transform part of the titanium nitride layer into a titanium silicon nitride layer. A conductive layer is formed in the word line trench. Subsequently, part of the conductive layer, part of the titanium silicon nitride layer and part of the silicon oxide layer are removed to form a recess. Finally, a cap layer fills in the recess.
Abstract:
A method of manufacturing a semiconductor device is provided, which includes the steps of providing a capacitor structure, forming a conductive layer on the capacitor structure, performing a hydrogen doping process to the conductive layer, forming a metal layer on the conductive layer after the hydrogen doping process, and patterning the metal layer and the conductive layer to forma top electrode plate.
Abstract:
A semiconductor memory device and a manufacturing method thereof are provided in the present invention. Storage node contacts are formed on a semiconductor substrate including active regions. Each storage node contact contacts at least one of the active regions. Each storage node contact has a recessed top surface. A first distance exists between a topmost point and a lowest point of the recessed top surface in a vertical direction. A second distance exists between the topmost point and a bottom surface of the storage node contact in the vertical direction. A ratio of the first distance to the second distance ranges from 30% to 70%. The contact resistance between the storage node contact and other conductive structures formed on the storage node contact may be reduced by the storage node contact having the recessed top surface, and the electrical operation condition of the semiconductor memory device may be improved accordingly.
Abstract:
A dielectric structure and a manufacturing method thereof and a memory structure are provided. The dielectric structure includes a dielectric layer and a plurality of crystalline grains disposed in the dielectric layer. The dielectric layer includes a first high-K dielectric material with a first dielectric constant. Each crystalline grain includes a second high-K dielectric material with a second dielectric constant greater than the first dielectric constant and greater than 20. Each crystalline grain has a crystal structure, so that each crystalline grain has a third dielectric constant greater than the second dielectric constant. Whole dielectric constant of the dielectric structure can be raised by performing an annealing process to form the crystalline grains in the dielectric layer, and the capacity of the memory structure for storing electric charges can be increased.
Abstract:
A semiconductor device is provided, including a substrate with an isolation layer formed thereon, wherein the substrate has a fin protruding up through the isolation layer to form a top surface and a pair of lateral sidewalls of the fin above the isolation layer; a silicon-germanium (SiGe) layer epitaxially grown on the top surface and the lateral sidewalls of the fin; and a gate stack formed on the isolation layer and across the fin, wherein the fin and the gate stack respectively extend along a first direction and a second direction. The SiGe layer formed on the top surface has a first thickness, the SiGe layer formed on said lateral sidewall has a second thickness, and a ratio of the first thickness to the second thickness is in a range of 1:10 to 1:30.
Abstract:
A method for fabricating a semiconductor device, and a semiconductor device made with the method are described. In the method, a cavity is formed in a substrate, a first epitaxy process is performed under a pressure higher than 65 torr to form a buffer layer in the cavity, and a second epitaxy process is performed to form a semiconductor compound layer on the buffer layer in the cavity. In the semiconductor device, the ratio (S/Y) of the thickness S of the buffer layer on a lower sidewall of the cavity to the thickness Y of the buffer layer at the bottom of the cavity ranges from 0.6 to 0.8.
Abstract:
A method for fabricating a semiconductor device, and a semiconductor device made with the method are described. In the method, a cavity is formed in a substrate, a first epitaxy process is performed under a pressure higher than 65 torr to form a buffer layer in the cavity, and a second epitaxy process is performed to form a semiconductor compound layer on the buffer layer in the cavity. In the semiconductor device, the ratio (S/Y) of the thickness S of the buffer layer on a lower sidewall of the cavity to the thickness Y of the buffer layer at the bottom of the cavity ranges from 0.6 to 0.8.
Abstract:
A semiconductor device includes a substrate having at least a trench formed therein. A conductive material fills a lower portion of the trench. A barrier layer is between the conductive material and the substrate. An insulating layer is in the trench and completely covers the conductive material and the barrier layer, wherein a portion of the insulating layer covering the barrier layer has a bird's peak profile.
Abstract:
A semiconductor device includes a semiconductor substrate having a gate trench including an upper trench and a lower trench. The upper trench is wider than the lower trench. A gate is embedded in the gate trench. The gate includes an upper portion and a lower portion. A first gate dielectric layer is between the upper portion and a sidewall of the upper trench. The first gate dielectric layer has a first thickness. A second gate dielectric layer is between the lower portion and a sidewall of the lower trench and between the lower portion and a bottom surface of the lower trench. The second gate dielectric layer has a second thickness that is smaller than the first thickness.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a memory region defined thereon; forming a trench in the substrate; performing a first ion implantation process to form a first doped region having a first conductive type in the substrate adjacent to the trench; forming a gate electrode in the trench; and performing a second ion implantation process to form a second doped region having a second conductive type in the substrate above the gate electrode.