Abstract:
One embodiment of the present invention is a method for constructing defect-and-failure-tolerant demultiplexers. This method is applicable to nanoscale, microscale, or larger-scale demultiplexer circuits. Demultiplexer circuits can be viewed as a set of AND gates, each including a reversibly switchable interconnection between a number of address lines, or address-line-derived signal lines, and an output signal line. Each reversibly switchable interconnection includes one or more reversibly switchable elements. In certain demultiplexer embodiments, NMOS and/or PMOS transistors are employed as reversibly switchable elements. In the method that represents one embodiment of the present invention, two or more serially connected transistors are employed in each reversibly switchable interconnection, so that short defects in up to one less than the number of serially interconnected transistors does not lead to failure of the reversibly switchable interconnection. In addition, error-control-encoding techniques are used to introduce additional address-line-derived signal lines and additional switchable interconnections so that the demultiplexer may function even when a number of individual, switchable interconnections are open-defective.
Abstract:
Various embodiments of the present invention are directed to three-dimensional crossbar arrays. In one aspect of the present invention, a three-dimensional crossbar array includes a plurality of crossbar arrays, a first demultiplexer, a second demultiplexer, and a third demultiplexer. Each crossbar array includes a first layer of nanowires, a second layer of nanowires overlaying the first layer of nanowires, and a third layer of nanowires overlaying the second layer of nanowires. The first demultiplexer is configured to address nanowires in the first layer of nanowires of each crossbar array, the second demultiplexer is configured to address nanowires in the second layer of nanowires of each crossbar array, and the third demultiplexer is configured to supply a signal to the nanowires in the third layer of nanowires of each crossbar array.
Abstract:
Lithography tools and substrates are aligned by generating geometric interference patterns using optical gratings associated with the lithography tools and substrates. In some embodiments, the relative position between a substrate and lithography tool is adjusted to cause at least one geometric shape to have a predetermined size or shape representing acceptable alignment. In additional embodiments, Moiré patterns that exhibit varying sensitivity are used to align substrates and lithography tools. Furthermore, lithography tools and substrates are aligned by causing radiation to interact with optical gratings positioned between the lithography tools and substrates. Lithography tools include an optical grating configured to generate a portion of an interference pattern that exhibits a sensitivity that increases as the relative position between the tools and a substrate moves towards a predetermined alignment position.
Abstract:
One embodiment of the present invention is a method for constructing defect-and-failure-tolerant demultiplexers. This method is applicable to nanoscale, microscale, or larger-scale demultiplexer circuits. Demultiplexer circuits can be viewed as a set of AND gates, each including a reversibly switchable interconnection between a number of address lines, or address-line-derived signal lines, and an output signal line. Each reversibly switchable interconnection includes one or more reversibly switchable elements. In certain demultiplexer embodiments, NMOS and/or PMOS transistors are employed as reversibly switchable elements. In the method that represents one embodiment of the present invention, two or more serially connected transistors are employed in each reversibly switchable interconnection, so that short defects in up to one less than the number of serially interconnected transistors does not lead to failure of the reversibly switchable interconnection. In addition, error-control-encoding techniques are used to introduce additional address-line-derived signal lines and additional switchable interconnections so that the demultiplexer may function even when a number of individual, switchable interconnections are open-defective.
Abstract:
Implementing logic with memristors may include circuitry with at least three memristors and a bias resistor in a logic cell. One of the at least three memristors is an output memristor within the logic cell and the other memristors of the at least three memristors are input memristors. Each of the at least three memristors and the bias resistor are electrically connected to voltage sources wherein each voltage applied to each of the at least three memristors and the bias resistor and resistance states of the at least three memristors determine a resistance state of the output memristor.
Abstract:
One embodiment of the present invention is a method for constructing defect-and-failure-tolerant demultiplexers. This method is applicable to nanoscale, microscale, or larger-scale demultiplexer circuits. Demultiplexer circuits can be viewed as a set of AND gates, each including a reversibly switchable interconnection between a number of address lines, or address-line-derived signal lines, and an output signal line. Each reversibly switchable interconnection includes one or more reversibly switchable elements. In certain demultiplexer embodiments, NMOS and/or PMOS transistors are employed as reversibly switchable elements. In the method that represents one embodiment of the present invention, two or more serially connected transistors are employed in each reversibly switchable interconnection, so that short defects in up to one less than the number of serially interconnected transistors does not lead to failure of the reversibly switchable interconnection. In addition, error-control-encoding techniques are used to introduce additional address-line-derived signal lines and additional switchable interconnections so that the demultiplexer may function even when a number of individual, switchable interconnections are open-defective.
Abstract:
Certain embodiments of the present invention are directed to a method of programming nanowire-to-conductive element electrical connections. The method comprises: providing a substrate including a number of conductive elements overlaid with a first layer of nanowires, at least some of the conductive elements electrically coupled to more than one of the nanowires through individual switching junctions, each of the switching junctions configured in either a low-conductance state or a high-conductance state; and switching a portion of the switching junctions from the low-conductance state to the high-conductance state or the high-conductance state to the low-conductance state so that individual nanowires of the first layer of nanowires are electrically coupled to different conductive elements of the number of conductive elements using a different one of the switching junctions configured in the high-conductance state. Other embodiments of the present invention are directed to a nanowire structure including a mixed-scale interface.
Abstract:
Lithography tools and substrates are aligned by generating geometric interference patterns using optical gratings associated with the lithography tools and substrates. In some embodiments, the relative position between a substrate and lithography tool is adjusted to cause at least one geometric shape to have a predetermined size or shape representing acceptable alignment. In additional embodiments, Moiré patterns that exhibit varying sensitivity are used to align substrates and lithography tools. Furthermore, lithography tools and substrates are aligned by causing radiation to interact with optical gratings positioned between the lithography tools and substrates. Lithography tools include an optical grating configured to generate a portion of an interference pattern that exhibits a sensitivity that increases as the relative position between the tools and a substrate moves towards a predetermined alignment position.
Abstract:
Certain embodiments of the present invention are directed to a method of fabricating a mixed-scale electronic interface. A substrate is provided with a first set of conductive elements. A first layer of nanowires may be formed over the first set of conductive elements. A number of channels may be formed, with each of the channels extending diagonally through a number of the nanowires of the first layer. A number of pads may be formed, each of which is electrically interconnected with an underlying conductive element of the first set of conductive elements and one or more adjacent nanowires of the first layer of nanowires. The pads and corresponding electrically interconnected nanowires define a number of pad-interconnected-nanowire-units. Additional embodiments are directed to a method of forming a nanoimprinting mold and a method of selectively programming nanowire-to-conductive element electrical connections.
Abstract:
Various embodiments of the present invention are directed to crossbar-memory systems to methods for writing information to and reading information stored in such systems. In one embodiment of the present invention, a crossbar-memory system comprises a first layer of microscale signal lines, a second layer of microscale signal lines, a first layer of nanowires configured so that each first layer nanowire overlaps each first layer microscale signal line, and a second layer of nanowires configured so that each second layer nanowire overlaps each second layer microscale signal line and overlaps each first layer nanowire. The crossbar-memory system includes nonlinear-tunneling resistors configured to selectively connect first layer nanowires to first layer microscale signal lines and to selectively connect second layer nanowires to second layer microscale signal lines. The crossbar-memory system also includes nonlinear tunneling-hysteretic resistors configured to connect each first layer nanowire to each second layer nanowire at each crossbar intersection.