摘要:
A device includes providing a silicon substrate; annealing the silicon substrate at a first temperature higher than about 900° C.; and lowering a temperature of the silicon substrate from the first temperature to a second temperature. A temperature lowering rate during the step of lowering the temperature is greater than about 1° C./second. A III-V compound semiconductor region is epitaxially grown on a surface of the silicon substrate using metal organic chemical vapor deposition (MOCVD).
摘要:
A CMOS FinFET device and method for fabricating a CMOS FinFET device is disclosed. An exemplary CMOS FinFET device includes a substrate including a first region and a second region. The CMOS FinFET further includes a fin structure disposed over the substrate including a first fin in the first region and a second fin in the second region. The CMOS FinFET further includes a first portion of the first fin comprising a material that is the same material as the substrate and a second portion of the first fin comprising a III-V semiconductor material deposited over the first portion of the first fin. The CMOS FinFET further includes a first portion of the second fin comprising a material that is the same material as the substrate and a second portion of the second fin comprising a germanium (Ge) material deposited over the first portion of the second fin.
摘要:
Stacking faults are reduced or eliminated by epitaxially growing a III-V compound semiconductor region in a trench followed by capping and annealing the region. The capping layer limits the escape of atoms from the region and enables the reduction or elimination of stacking faults along with the annealing.
摘要:
An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.
摘要:
An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.
摘要:
An embodiment is a FinFET device. The FinFET device comprises a fin, a first source/drain region, a second source/drain region, and a channel region. The fin is raised above a substrate. The first source/drain region and the second source/drain region are in the fin. The channel region is laterally between the first and second source/drain regions. The channel region has facets that are not parallel and not perpendicular to a top surface of the substrate.
摘要:
A CMOS FinFET device and method for fabricating a CMOS FinFET device is disclosed. An exemplary CMOS FinFET device includes a substrate including a first region and a second region. The CMOS FinFET further includes a fin structure disposed over the substrate including a first fin in the first region and a second fin in the second region. The CMOS FinFET further includes a first portion of the first fin comprising a material that is the same material as the substrate and a second portion of the first fin comprising a III-V semiconductor material deposited over the first portion of the first fin. The CMOS FinFET further includes a first portion of the second fin comprising a material that is the same material as the substrate and a second portion of the second fin comprising a germanium (Ge) material deposited over the first portion of the second fin.
摘要:
A strained structure of a semiconductor device is disclosed. An exemplary structure for a semiconductor device comprises a substrate comprising a major surface; a gate stack on the major surface of the substrate; a shallow trench isolation (STI) disposed on one side of the gate stack, wherein the STI is within the substrate; and a cavity filled with a strained structure distributed between the gate stack and the STI, wherein the cavity comprises one sidewall formed by the STI, one sidewall formed by the substrate, and a bottom surface formed by the substrate, wherein the strained structure comprises a SiGe layer and a first strained film adjoining the sidewall of the STI.
摘要:
A semiconductor device having an epitaxial layer a method of manufacture thereof is provided. The semiconductor device has a substrate with a trench formed therein and a recess formed below the trench. The recess has sidewalls with a (111) crystal orientation. The depth of the trench is such that the depth is greater than or equal to one-half a length of sidewalls of the recess. An epitaxial layer is formed in the recess and the trench. The depth of the trench is sufficient to cause dislocations formed between the interface of the semiconductor substrate and the epitaxial layer to terminate along sidewalls of the trench.
摘要:
An embodiment is a FinFET device. The FinFET device comprises a fin, a first source/drain region, a second source/drain region, and a channel region. The fin is raised above a substrate. The first source/drain region and the second source/drain region are in the fin. The channel region is laterally between the first and second source/drain regions. The channel region has facets that are not parallel and not perpendicular to a top surface of the substrate.