Abstract:
A method for projection correction includes following steps. An original image is projected as a projection image on an object. A projection-zone image including the projection image is captured from the object. A projection image outline corresponding to the projection image is obtained from the projection-zone image. An operation is performed on the projection image outline to obtain a horizontal inclination and a vertical inclination. The original image is pre-warped according to the horizontal inclination and the vertical inclination to obtain a corrected image, and the corrected image is projected on the object.
Abstract:
The present disclosure provides a swinging device having a swinging mechanism disposed on an energy provider, wherein volume and shape of the swinging mechanism and a distance between the swinging mechanism and the energy provider are adjusted so as to control the ratio of the distance and a characteristic value corresponding to the swinging mechanism in a specific range such that the swinging mechanism is capable of resonating with respect to the rotation of the energy provider. The swinging mechanism is capable of detecting the rotating frequency of the energy provider as well as combining with a display unit which is capable of displaying information with respect to the rotating status or displaying image patterns controlled according to the rotating status.
Abstract:
A method of manufacturing a semiconductor device includes forming a metal-insulator-metal (MIM) device having a metal organic chemical vapor deposited (MOCVD) lower electrode and an atomic layer deposited (ALD) upper electrode.
Abstract:
A method of writing a magneto-resistive random access memory (MRAM) cell includes providing a writing pulse to write a value to the MRAM cell; and verifying a status of the MRAM cell immediately after the step of providing the first writing pulse. In the event of a write failure, the value is rewritten into the MRAM cell.
Abstract:
A method of forming an integrated circuit includes forming magnetic tunnel junction (MTJ) layers; etching the MTJ layers to form a MTJ cell; and forming a dielectric capping layer on sidewalls of the MTJ cell, wherein the step of forming the dielectric capping layer is in-situ performed with the step of etching the MTJ layers.
Abstract:
The present disclosure provides a magnetic memory element. The memory element includes a magnetic tunnel junction (MTJ) element and an electrode. The electrode includes a pinning layer, a pinned layer, and a non-magnetic conductive layer. In one embodiment, the MTJ element includes a first surface having a first surface area, and the electrode includes a second surface. In the embodiment, the second surface of the electrode is coupled to the first surface of the MTJ element such that an interface area is formed and the interface area is less than the first surface area.
Abstract:
Thus, the present disclosure provides a method of programming a memory array. At least one memory cell including a magnetic element is provided. At least one current source coupled to the magnetic element is provided. A unipolar current is supplied from the at least one current source to the magnetic element at a plurality of non-zero current levels.
Abstract:
An apparatus and methods for a non-volatile magnetic random access memory (MRAM) device that includes a word line, a bit line, and a magnetic thin film memory element located at an intersection of the word and bit lines. The magnetic thin film memory element includes an alloy of a rare earth element and a transition metal element. The word line is operable to heat the magnetic thin film memory element when a heating current is applied. Heating of the magnetic thin film memory element to a predetermined temperature reduces its coercivity, which allows switching of the magnetic state upon application of a magnetic field. The magnetic state of the thin film element can be determined in accordance with principles of the Hall effect.
Abstract:
A heat block for holding an electronic device is disclosed. The heat block comprises a base and at least one discharge device. The discharge device is disposed on the base. The discharge device is electrically conductive and is grounded. When the electronic device is placed on the base, the discharge device is in contact with an electrical contact of the electronic device.
Abstract:
A memory cell structure. A first conductive line is cladded by at least two first ferromagnetic layers respectively having a first easy axis and a second easy axis, a nano oxide layer located between the first ferromagnetic layers, and a first pinned ferromagnetic layer. The first and second easy axes are 90 degree twisted-coupled with the first easy axis parallel to the length of the first conductive line and the second easy axis perpendicular to the length of the first conductive line. A storage device is adjacent to the first conductive line, receiving a magnetic field generated from a current flowing through the first conductive line.