Abstract:
The present application discloses a method of generating bone tissue in vivo comprising implanting cells into a human or animal at a location where bone growth is required, wherein the cells have been obtained by the in vitro suspension culture of mesenchymal stem cells attached to microcarriers.
Abstract:
A carbon nano-tube based photoelectric device includes a substrate and a carbon nanotube (CNT) over the substrate. The CNT comprises a first end and a second end, wherein the CNT has a CNT work function. A high work-function electrode over the substrate is in electric contact with the first end of the CNT. The high work-function electrode has a first work function higher than the CNT work function. A low work-function electrode over the substrate is in electric contact with the second end of the CNT. The low work-function electrode has a second work function lower than the CNT work function. The CNT can form a conductive channel between the high work-function electrode and the low work-function electrode. The carbon nano-tube based photoelectric device also includes a dielectric material is in contact with a side surface of the CNT and a conductive material in contact with the dielectric material.
Abstract:
The present invention provides an improved atherectomy catheter having means for directing particles generated by a cutting element into a collection chamber. Methods of directing the cut material from a blood vessel lumen into a collection chamber are also provided.
Abstract:
According to one aspect of the present invention, a fatigue resistant stent comprises a flexible tubular structure having an inside diameter, an outside diameter, and a sidewall therebetween and having apertures extending through the sidewall. According to other aspects of the invention, processes for making a fatigue resistant stent are disclosed. According to further aspects of the invention, delivery systems for a fatigue resistant stent and methods of use are provided.
Abstract:
The invention relates to methods of producing a desired phenotype in a plant by manipulation of gene expression within the plant. The method relates to means which inhibit the level of FVE gene expression or activity, wherein a desired phenotype, such as increased biomass relative to a wild-type control plant, is achieved. The invention also relates to nucleic acid sequences useful for such methods.
Abstract:
Embodiments of the present invention provide a method, devices and a system for automatic device failure recovery. The method mainly includes: sending a recovery request message to a management device or a server; obtaining a program file used for failure recovery from the management device or the server; and performing the failure recovery by using the program file. With the implemention of the present invention, a device may recover from a failure fully automatically. No intervention of a local user is needed in the whole failure recovery process. Therefore, the implementation of the recovery is more convenient and more flexible. Meanwhile, the failure emergency recovery of the device may be implemented automatically, which makes the failure recovery processing safer and more reliable, and effectively reduces the cost of the local maintenance of a device.
Abstract:
FIG. 1 is a front, right and top perspective view of a carrying case, showing my design. FIG. 2 is a rear, left and bottom perspective view thereof. FIG. 3 is a front elevation view thereof. FIG. 4 is a rear elevation view thereof. FIG. 5 is a left side elevation view thereof. FIG. 6 is a right side elevation view thereof. FIG. 7 is a top plan view thereof. FIG. 8 is a bottom plan view thereof. FIG. 9 is an enlarged view of detail 9 in FIG. 1; and, FIG. 10 is another front, right and top perspective view of the carrying case in a usable state. The broken lines depict portions of the carrying case that form no part of the claimed design. The dot-dash broken lines in FIGS. 1 and 9 depict the boundaries of the enlargements that form no part of the claimed design.
Abstract:
Parts of compounds, after being labeled by radionuclide, of the phenyl benzyl ether derivative, are used as Aβ plaque imaging agent. The structural formula of the phenyl benzyl ether derivative is shown by formula (I). The present invention develops a kind of brand new phenyl benzyl ether derivative which has high affinity with Aβ plaques in brains of AD patients. The chemical structure of the phenyl benzyl ether derivative is different from that of compounds disclosed in the prior art and the phenyl benzyl ether derivative belongs to a brand new compound for diagnosing and treating AD. The obtained Aβ plaque imaging agent has the advantages that the in-vivo stability is good, the fat solubility is low, the removal speed for the brain is fast, the problem of removing the radionuclide in vivo does not exist, and the application prospect and the market value are great.
Abstract:
A test apparatus with physical separation feature is disclosed. The test apparatus includes probes (210), a peripheral circuit (220), a circuit of special function (230), wherein the peripheral circuit and the circuit of special function are separately arranged on different circuit boards (240, 250). The peripheral circuit and the circuit of special function are both electrically connected to the probes. In the test apparatus with physical separation feature, the peripheral circuit and the circuit of special function are separated in physical spaces, so that interference between the components is prevented and the testing cost is reduced.
Abstract:
A compression method for compressing an original test file is disclosed. The compression method includes the following steps: defining type modules; scanning the original test file line by line in bytes and matching data of the original test file with the type modules to determine types of the data; compressing continuous data of the same type in lines and representing each compressed portion with a thumbnail. The compression method enables a browser to read test files with a fast speed by compressing test files according to the types of data.