Abstract:
Systems, methods, and programming are described for inspecting a substrate having a pattern imaged thereon, including obtaining a plurality of selected target locations on the substrate, the selected target locations dependent on characteristics of the pattern, scanning the substrate with a plurality of electron beamlets, wherein the scanning includes individually addressing the beamlets to impinge on the selected target locations independently, detecting a reflected or a transmitted portion of the beamlets, and generating images of the selected target locations.
Abstract:
A method for determining an overlay metric is disclosed including obtaining angle resolved distribution spectrum data relating to a measurement of a target structure including a symmetrical component. An overlay dependent contour of a feature of the target structure is determined from the angle resolved distribution spectrum data, from which an overlay metric is determined. The method includes exposing an exposed feature onto a masked layer including a mask which defines masked and unmasked areas of the layer, such that a first portion of the exposed feature is exposed on a masked area of the layer and a second portion of the exposed feature is exposed on a non-masked area of the layer, the size of the first portion with respect to the second portion being overlay dependent; and performing an etch step to define an etched feature, the etched feature corresponding to the second portion of the exposed feature.
Abstract:
A method to improve a lithographic process for imaging a portion of a patterning device pattern onto a substrate using a lithographic projection having an illumination system and projection optics, the method including: (1) obtaining a simulation model that models projection of radiation by the projection optics, wherein the simulation model models an effect of an obscuration in the projection optics, and configuring, based on the model, the portion of the patterning device pattern, and/or (2) obtaining a simulation model that models projection of radiation by the projection optics, wherein the simulation model models an anamorphic demagnification of radiation by the projection optics, and configuring, based on the model, the portion of the patterning device pattern taking into account an anamorphic manufacturing rule or anamorphic manufacturing rule ratio.
Abstract:
A second set of superimposed gratings are superposed over a first set of superimposed gratings. The second set of gratings have a different periodicity from the first set of gratings or a different orientation. Consequently the first order diffraction pattern from the second set of superimposed gratings can be distinguished from the first order diffraction pattern from the first set of superimposed gratings.
Abstract:
An optical element includes a surface including a tilted profile having height differences, thereby providing cavities and elevations having a predetermined maximum height difference, and a transmissive layer that covers the cavities and the elevations of the optical element. A first height of the transmissive layer in the cavities is substantially equal or larger than the predetermined maximum height difference and the transmissive layer has a second height on the elevations and the second height is about 10-500 nm. The transmissive layer is enabled to optically filter incident radiation, and the optical element is a grating.
Abstract:
A method is disclosed. A change in position of a substrate in a direction substantially parallel to a direction of propagation of a radiation beam that is, or is to be, projected on to that substrate is determined, which change in position would result in a lithographic error in the application of a pattern to that substrate using that radiation beam. The change in position of the substrate is used to control a property of the radiation beam when, or as, the radiation beam is projected onto the substrate in order to reduce the lithographic error.
Abstract:
An optical apparatus is disclosed that has a convex mirror and a concave mirror with an aperture, wherein, in use, radiation from a radiation emitter passes through the aperture and is incident upon the convex mirror before being incident upon the concave mirror, the optical apparatus arranged to form the radiation into a radiation beam, wherein the concave mirror is translatable towards and away from the convex mirror or the convex mirror is translatable towards and away from the concave mirror, to adjust divergence of the radiation beam.
Abstract:
A lithographic projection apparatus is provided wherein an object situated in a pulsed beam of radiation has an electrode in its vicinity and a voltage source connected either to the electrode or to the object. This configuration can provide a negative voltage pulse to the object relative to the electrode. The beam of radiation and the voltage pulse from the voltage source are provided in phase or out of phase. In this way, the object is shielded against secondary electrons generated by radiation beam illumination.
Abstract:
A radiation source comprises an anode and a cathode that are configured and arranged to create a discharge in a gas or vapor in a space between anode and cathode and to form a plasma pinch so as to generate electromagnetic radiation. The gas or vapor may comprise xenon, indium, lithium and/or tin. The radiation source may comprise a plurality of discharge elements, each of which is only used for short intervals, after which another discharge element is selected. The radiation source may also comprise a triggering device, which device can facilitate improving the exact timing of the pinch formation and thus the pulse of EUV radiation. The radiation source may also be constructed to have a low inductance, and operated in a self-triggering regime.
Abstract:
Systems and methods for simulating a plasma etch process are disclosed. According to certain embodiments, a method for simulating a plasma etch process may include predicting a first characteristic of a particle of a plasma in a first scale based on a first plurality of parameters; predicting a second characteristic of the particle in a second scale based on a modification of the first characteristic caused by a second plurality of parameters; and simulating an etch characteristic of a feature based on the first and the second characteristics of the particle. A multi-scale physical etch model or a multi-scale data driven model may be used to simulate the plasma etch process.