Abstract:
The invention relates to a method for debindering and/or purifying granules or material suitable for use in High Pressure High Temperatures diamond or cubic boron nitride synthesis, the method comprising the steps of passing the granules or material through a zone having controlled atmosphere and temperature in a continuous manner, the zone having a maximum temperature within the zone of greater than approximately 600° C, wherein the time spent by each granule within the zone is less than 30 minutes.
Abstract:
By using a CBN synthesis catalyst containing a CBN synthesis catalyst component coated with an organic substance for producing cubic boron nitride (CBN), the CBN can be produced at a high transformation ration and a high yield ratio. Each of the CBN grains produced through this method has a sharp shape with a highly developed (111) plane, exhibits high strength, and exhibits a small reduction in strength due to heating. The amount of catalyst component contained in the CBN is 7.5×10−4 mol or less per 1 mol of CBN.
Abstract:
Methods of synthesizing superabrasive particles such as diamonds and cubic boron nitride are disclosed and described. One procedure includes providing a superabrasive precursor including a source material in a metal matrix. The carbon source can contain a majority of carbon atoms oriented in a rhombohedral polytype configuration. A shock wave can be passed through the carbon source that is sufficient to convert the diamond to graphite. The superabrasive precursor can be formed by dissolving hexagonal carbon in a suitable molten metal or by mixing particulate components. Similarly, hexagonal boron nitride can be used in a metal matrix which is subjected to a shock wave having sufficient energy to form cubic boron nitride. The superabrasive particles produced using these methods can be provided at relatively high yields with reduced costs.
Abstract:
An improved method for synthesizing superabrasive particles provides high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method can include forming a growth precursor of a substantially homogeneous mixture of raw material and catalyst material or layers of raw material and metal catalyst. The growth precursor can have a layer of adhesive over at least a portion thereof. A plurality of crystalline seeds can be placed in a predetermined pattern on the layer of adhesive. The growth precursor can be maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. Advantageously, the patterned placement of crystalline seeds and disclosed processes allow for production of various morphologies of synthetic diamonds, including octahedral and cubic diamonds, and improved growth conditions generally. As a result, the grown superabrasive particles typically have a high yield of high quality particles and a narrow distribution of particle sizes.
Abstract:
A self-grown monopoly compact grit and high pressure, high temperature process for preparing the same. The high pressure, high temperature sintered/synthesized monopoly compact grit is used in various industrial tools such as saw blades, grinding wheels, cutting tools and drill bits. Further, the monopoly compact grit of the present invention is produced from a seed of a mono-crystal of diamond or cubic boron nitride surrounded by either a self-grown crystal layer or an integrally bonded poly-crystalline sintered compact layer. The self-grown crystal layer is a new grown crystal structure where the seed crystal grows into a new phase through a normal diamond or cubic boron nitride synthesis process in the presence of a catalyst metal solvent. The compact layer is composed of about 50 to about 90 volume percent of diamond or cubic boron nitride, a typical binder material, which is a catalyst for crystal-to-crystal bonding, and a cementing agent which is a binding agent capable of forming stable carbide and nitride bonds.
Abstract:
A cell for forming a composite hard material and hard materials and methods of forming composite hard materials. A cell (10) in which the article is formed includes a talc outer sleeve (12), a glass sleeve (14) and a reflecting foil (22). A heater (18) is arranged inwardly of the foil (22) and a barrier layer (16) is arranged inwardly of the glass sleeve (14). A central column (20) is defined for receiving the charge of material (50) from which the hard composite material is to be formed. The charge material is located in a mold (76, 100) which can define the final shape of the article thereby avoiding the need for additional machining, and the mold and charge material are subject to high temperature and pressure to form the composite material while maintaining the charge subject to hydrostatic pressure during the application of pressure and high temperature and maintaining a low temperature gradient across the charge during formation of the composite hard material to reduce uneven pressurization of the composite hard material. The article may also be formed by forming first and second mixtures (120, 130) of composite hard material so as to form an outer surface on the article which has a higher hard particle content than an interior core portion of the article.
Abstract:
The present invention describes a novel metal bond superabrasive tool that contains a superabrasive such as diamond or CBN grits distributed in a predetermined or an uniform pattern. Such a pattern is produced by fabricating plurality layers of metal matrix with superabrasive grits distributed therein in a predetermined pattern and concentration and subsequently assembling and consolidating the layers into a tool segment. Superabrasive particles may be incorporated during the process of making these layers, or they may be planted afterwards into these layers that contains the metal matrix powder. In the latter case, the planting may be guided by a template with apertures laid in a specific pattern.
Abstract:
The present invention describes a novel abrasive tool that contains abrasive particles distributed in a predetermined pattern. Such a pattern is produced by fabricating two-dimensional slices and subsequently assembling and consolidating them into a three-dimensional tool. Abrasive particles 20 may be incorporated during the process of making these two-dimensional slices, or they may be planted afterwards into these slices 100 that contains matrix powder. In the latter case, the planting may be guided by a template 110 with apertures 114 laid in a specific pattern.
Abstract:
A metal-matrix diamond or cubic boron nitride composite and method of making the same are disclosed. The metal-matrix/diamond composite includes grains of diamond uniformly distributed in a metal matrix. Alternatively, grains of cubic boron nitride may be used. Suitable metals for the metal matrix material may include nickel, cobalt, iron, and mixtures or alloys thereof. Other transition metals also may be used. The metal-matrix/diamond or metal-matrix/cubic boron nitride composite has high fracture toughness due to its fine microstructure. Such a metal-matrix/diamond or metal-matrix/cubic boron nitride composite is suitable for use in blanks or cutting elements for cutting tools, drill bits, dressing tools, and wear parts. It also may be used to make wire drawing dies.
Abstract:
According to the present invention there is provided a wear resistant material consisting of 3-60% by volume of diamond in a matrix containing at least one hard constituent consisting of carbide, nitride and/or carbonitride of one metal of group IV, V and VI in the Periodic Table and a binder phase based upon Co, Ni and/or Fe at which the diamonds are surrounded by a layer >1 .mu.m of refractory metals, carbides, nitrides, oxides, borides or silicides. In this way, a dissolution of diamonds during the sintering is prevented by a special combination of layer material and sintering compaction process.