CMOS integrated process for fabricating monocrystalline silicon micromechanical elements by porous silicon micromachining
    12.
    发明申请
    CMOS integrated process for fabricating monocrystalline silicon micromechanical elements by porous silicon micromachining 失效
    通过多孔硅微加工制造单晶硅微机械元件的CMOS集成工艺

    公开(公告)号:US20090261387A1

    公开(公告)日:2009-10-22

    申请号:US12314547

    申请日:2008-12-12

    Abstract: The invention relates to a process for fabricating a monocrystalline Si-micromechanical element integrated with a CMOS circuit element within the CMOS technology, wherein a domain of second conducting property is formed within a substrate of first conducting property, here the second conducting property is reverse with respect to the first conducting property, then simultaneously with or immediately after this a domain of monocrystalline Si is formed within the substrate for fabricating a micromechanical element. After this, a CMOS circuit element is fabricated within the substrate through the known steps of CMOS technology and then the circuit element, as well as a portion of said domain for fabricating the micromechanical element that will carry the micromechanical element after its fabrication are covered with a protecting layer. Then by starting a front-side isotropic porous Si-etching from the exposed surface of said domain for fabricating the micromechanical element and by continuing the etching until said portion that will carry the micromechanical element after its fabrication becomes at least in its full extent underetched, a porous Si sacrificial layer is created which at least partially encloses said portion that will carry the micromechanical element after its fabrication. As a next step, the exposed surface of said porous Si sacrificial layer is passivated by applying a metallic thin film thereon and metallic contact pieces of the circuit element through the known steps of CMOS technology are formed. Finally, the metallic thin film that covers the exposed surface of the porous Si sacrificial layer is removed and the micromechanical element is formed by chemically dissolving said porous Si sacrificial layer.

    Abstract translation: 本发明涉及一种在CMOS技术中制造与CMOS电路元件集成的单晶Si-微机械元件的方法,其中在第一导电性质的衬底内形成第二导电性质的畴,这里第二导电性能与 相对于第一导电性质,然后在该单晶硅的一个或多个之后,形成用于制造微机械元件的基板内。 之后,通过CMOS技术的已知步骤,在衬底内制造CMOS电路元件,然后电路元件以及用于制造将在其制造之后承载微机电元件的微机械元件的一部分用于覆盖微机电元件 保护层。 然后通过从用于制造微机电元件的所述畴的暴露表面开始前侧各向同性多孔Si蚀刻,并且通过继续蚀刻直到在其制造之后将携带微机电元件的部分至少在其全部程度上不被蚀刻, 产生多孔Si牺牲层,其至少部分地包围将在其制造之后承载微机械元件的所述部分。 作为下一步骤,通过在其上施加金属薄膜来钝化所述多孔Si牺牲层的暴露表面,并通过CMOS技术的已知步骤形成电路元件的金属接触片。 最后,去除覆盖多孔Si牺牲层的暴露表面的金属薄膜,并通过化学溶解所述多孔Si牺牲层形成微机械元件。

    MICROELECTROMECHANICAL DEVICE AND METHOD UTILIZING A POROUS SURFACE

    公开(公告)号:US20080218843A1

    公开(公告)日:2008-09-11

    申请号:US12119712

    申请日:2008-05-13

    CPC classification number: B81B3/001 B81B2201/047 B81C2201/0115 G02B26/001

    Abstract: A microelectromechanical device (MEMS) utilizing a porous electrode surface for reducing stiction is disclosed. In one embodiment, a microelectromechanical device is an interferometric modulator that includes a transparent electrode having a first surface; and a movable reflective electrode with a second surface facing the first surface. The movable reflective electrode is movable between a relaxed and actuated (collapsed) position. An aluminum layer is provided on either the first or second surface. The aluminum layer is then anodized to provide an aluminum oxide layer which has a porous surface. The porous surface, in the actuated position, decreases contact area between the electrodes, thus reducing stiction.

    Microelectromechanical device and method utilizing a porous surface
    17.
    发明授权
    Microelectromechanical device and method utilizing a porous surface 失效
    微机电装置和利用多孔表面的方法

    公开(公告)号:US07417784B2

    公开(公告)日:2008-08-26

    申请号:US11407470

    申请日:2006-04-19

    CPC classification number: B81B3/001 B81B2201/047 B81C2201/0115 G02B26/001

    Abstract: A microelectromechanical device (MEMS) utilizing a porous electrode surface for reducing stiction is disclosed. In one embodiment, a microelectromechanical device is an interferometric modulator that includes a transparent electrode having a first surface; and a movable reflective electrode with a second surface facing the first surface. The movable reflective electrode is movable between a relaxed and actuated (collapsed) position. An aluminum layer is provided on either the first or second surface. The aluminum layer is then anodized to provide an aluminum oxide layer which has a porous surface. The porous surface, in the actuated position, decreases contact area between the electrodes, thus reducing stiction.

    Abstract translation: 公开了一种利用多孔电极表面降低静摩擦力的微机电装置(MEMS)。 在一个实施例中,微机电装置是干涉式调制器,其包括具有第一表面的透明电极; 以及具有面向第一表面的第二表面的可移动反射电极。 可移动反射电极可在松弛和致动(折叠)位置之间移动。 在第一或第二表面上提供铝层。 然后将铝层阳极氧化以提供具有多孔表面的氧化铝层。 处于致动位置的多孔表面减小了电极之间的接触面积,从而减小了静电。

    MICROELECTROMECHANICAL DEVICE AND METHOD UTILIZING A POROUS SURFACE
    19.
    发明申请
    MICROELECTROMECHANICAL DEVICE AND METHOD UTILIZING A POROUS SURFACE 失效
    微电子设备和利用多孔表面的方法

    公开(公告)号:US20080030825A1

    公开(公告)日:2008-02-07

    申请号:US11869467

    申请日:2007-10-09

    CPC classification number: B81B3/001 B81B2201/047 B81C2201/0115 G02B26/001

    Abstract: A microelectromechanical device (MEMS) utilizing a porous electrode surface for reducing stiction is disclosed. In one embodiment, a microelectromechanical device is an interferometric modulator that includes a transparent electrode having a first surface; and a movable reflective electrode with a second surface facing the first surface. The movable reflective electrode is movable between a relaxed and actuated (collapsed) position. An aluminum layer is provided on either the first or second surface. The aluminum layer is then anodized to provide an aluminum oxide layer which has a porous surface. The porous surface, in the actuated position, decreases contact area between the electrodes, thus reducing stiction.

    Abstract translation: 公开了一种利用多孔电极表面降低静摩擦力的微机电装置(MEMS)。 在一个实施例中,微机电装置是干涉式调制器,其包括具有第一表面的透明电极; 以及具有面向第一表面的第二表面的可移动反射电极。 可移动反射电极可在松弛和致动(折叠)位置之间移动。 在第一或第二表面上提供铝层。 然后将铝层阳极氧化以提供具有多孔表面的氧化铝层。 处于致动位置的多孔表面减小了电极之间的接触面积,从而减小了静电。

Patent Agency Ranking