Abstract:
A bicycle control cable is provided with a central wire and at least one resin string. The at least one string made of resin is spirally wound onto the radially outermost surface in a direction intersecting with a center longitudinal axis of the central wire with a pitch less than or equal to 1 millimeter. The at least one resin string defines a spiral gap between adjacent windings of the at least one resin string. The at least one resin string defines an outer sliding surface for reducing a sliding resistance of the central wire. The central wire and the at least one resin string define an inner wire configured to slidably move in an axial direction with respect to the center longitudinal axis of the central wire within an outer case to operate a bicycle component.
Abstract:
An object of the invention is to provide a high strength and light hybrid rope. At the center of the hybrid rope 1, there is arranged a high strength synthetic fiber rope 3 formed by braiding multiple high strength synthetic fiber bundles 30 each composed of multiple high strength synthetic fiber filaments 31. Given that the pitch of braid of the high strength synthetic fiber bundles 30 is represented by “L” and the diameter of the high strength synthetic fiber rope 3 is represented by “d”, the pitch of braid “L” and the diameter “d” are adjusted such that the value L/d is equal to or higher than 6.7.
Abstract translation:本发明的目的是提供一种高强度轻型混合绳。 在混合动力绳索1的中央设置有通过编织由多根高强度合成纤维丝31组成的多根高强度合成纤维束30而形成的高强度合成纤维绳3.鉴于高强度的编织物的间距 合成纤维束30由“L”表示,高强度合成纤维绳3的直径由“d”表示,编织物“L”的间距和直径“d”被调整为使得L / d 等于或高于6.7。
Abstract:
Provided is a technique for attaining tire weight reduction while inhibiting occurrence of a product defect caused by deformation by improving the structure of a steel cord used for a carcass ply to improve the resistivity against deformation of a green tire when stored in an unvulcanized state.Also provided is a steel cord for reinforcing rubber articles with a multi-twisted structure in which a plurality of strands 11, 12 formed by twisting a plurality of wires 1, 2, 3 together in a layered-twisted structure are twisted together in a 2-layer-twisted structure. The cord mass is from 35 g/m to 65 g/m, and the ratio of flexural rigidity G (N·mm2) to cord cross section A (mm2), G/A (N) is from 400 N to 650 N.
Abstract:
An object of the invention is to provide a high strength and light hybrid rope. At the center of the hybrid rope 1, there is arranged a high strength synthetic fiber rope 3 formed by braiding multiple high strength synthetic fiber bundles 30 each composed of multiple high strength synthetic fiber filaments 31. Given that the pitch of braid of the high strength synthetic fiber bundles 30 is represented by “L” and the diameter of the high strength synthetic fiber rope 3 is represented by “d”, the pitch of braid “L” and the diameter “d” are adjusted such that the value L/d is equal to or higher than 6.7.
Abstract:
A wire rope for a running wire, has a core rope, a plurality of side strands arranged at an outer periphery of the core rope to be twisted together therewith, and a resin spacer interposed between the side strands, the core rope including a core rope main body composed of a plurality of wires and a resin coating layer outwardly surrounding the core rope main body so that the resin coating layer separates the core rope main body from the side strands, each of the side strands being composed of a plurality of further wires, and the resin spacer being provided with contour corresponding to an outer layer of the further wires of the side strands and extending between the wires of the outer layer of the side strands.
Abstract:
A reinforcing structure designed for handling compression stress states when the structure is molded into a composite. The structure, specifically a wrapped cord with metallic filaments contained therein, is suitable for both compression and tension load forces. The reinforcing structure has a core comprising a plurality of essentially straight, nested filaments arranged in parallel, the filaments forming a line of contact with adjacent filaments that extends along the length of the filaments. Wrapped about the core is at least one helically wound wire.
Abstract:
A cord comprising at least a first pair and a second pair of wires (2a, 2b) of different diameter randomly disposed in transverse cross section thereof, is obtained by arranging in a nacelle (7) of a double-twisting laying machine, a twister (16) operating upstream of a preformer (15). The twister (16), rotating in a direction opposite to that of the impeller (5) and at a speed which is twice that of the impeller, neutralizes the internal torsional stresses induced in the wires (2a, 2b) by effect of the double twisting carried out upon the action of the impeller itself. Thus, a better control of the preforming operation executed on the wires (2a, 2b) disposed parallel in respectively coplanar axes is enabled. The obtained cord (1), within each laying pitch and only under a traction condition involving a load not exceeding 5 kg, has at least one right cross section in which at least one wire (2a, 2b) is spaced apart from at least one of the adjacent wires so as to facilitate the rubberizing step, by enabling access of the blend to the cross section and penetration thereof along the cord axis. The cord is preferably used as a reinforcing element for the belt structure.
Abstract:
A fishing net twine comprising a single first yarn and a plurality of second yarns which are orderly stranded together with the first yarn. The first yarn is a bundle of multiple filaments having a thickness of 8 to 42 denier and a monofilament having a thickness of 0.10 to 0.24 mm which are stranded together. The second yarn includes a number of monofilaments having a thickness of 0.10 to 0.24 mm.
Abstract:
A steel cord for the reinforcement of rubber articles is disclosed, which comprises a central base structure composed of 1 to 4 steel filaments, and at least one coaxial layer composed of plural steel filaments arranged around the central base structure so as to adjoin them to each other, these steel filaments being twisted in the same direction at the same pitch. In the steel cord of this type, the steel filaments constituting the central base structure have the same diameter (dc), while at least one steel filament of the coaxial layer has a diameter (dso) smaller than the diameter (dc) of the steel filament in the central base structure.
Abstract:
A method is provided for making a plastic-filled wire rope by preheating a lubricated wire rope to a temperature close to the melting point of the plastic material with which the rope is to be filled, and then injecting the plastic material in molten state under heat and pressure into the wire rope so as to fill essentially completely the interstices between the strands and the individual wires, while displacing and removing most of the lubricant initially present within the rope. The obtained novel plastic-filled, lubricated wire rope has improved wear and fatigue resistance as well as increased life.