Abstract:
A device for storing and delivering fluids, the fluids including a gas and a liquid, the device including: at least one container (1) for storing the fluids, a gas inlet (2) and a gas outlet, an inlet and an outlet for the liquid, at least one facility (8) for injecting gas into the container (1) for storing the fluids; at least one outlet facility (9) connected to the gas outlet for evacuating the compressed gas, liquid discharging elements, and at least one motor group (15) including at least one pump (17) and at least one motor (18) for injecting the pressurized liquid into the container (1) for storing the fluids via the liquid inlet.
Abstract:
A lightweight high pressure repairable piston composite tie-rod accumulator that does not use a load bearing metallic liner. An exemplary accumulator includes composite tie rods that sustain the axial stress induced by pressurization of the accumulator, while the shell is designed such that it sustains the stress of pressurization in the hoop direction. The tie rods can be secured using a wedge-type tie rod retention mechanism. As a result, no pretension is applied to the tie rods and the composite shell may be designed entirely for hoop stress.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
A compressed natural gas (CNG) refueling system has banks of cylinders containing CNG, a hydraulic fluid reservoir containing a hydraulic fluid which does not readily mix with CNG, and reversible flow valves. Each cylinder has a fitting installed in an opening at one end. The fitting contains a hydraulic fluid port and a gas port. The other end of each cylinder is closed. Hydraulic fluid is pumped from the reservoir into each cylinder through the hydraulic fluid port. Inside each cylinder, the hydraulic fluid directly contacts the CNG, forcing the CNG out through the gas port. When a sensor detects that the cylinders are substantially drained of CNG, the reversible flow valves will reverse orientation, allowing the hydraulic fluid to flow back into the reservoir.
Abstract:
A gas delivery apparatus which includes a vehicle fitted with multiple compressed gas cylinders, each provided with a free piston, along with a separate liquid reservoir cylinder, for sequentially displacing the gas located on one side of the free piston in each of the gas cylinders with liquid from the reservoir introduced on the opposite side of the free piston and relocating the free piston disposed in each gas cylinder by residual gas pressure. A method for dispensing compressed gas such as compressed natural gas from gas-filled cylinders containing a free piston and fitted with piping for introducing a liquid into each cylinder on one side of the piston to dispense gas from the opposite side of the piston, which method includes the steps of loading the cylinders with compressed gas, transporting the cylinders to a receiving reservoir location, attaching the gas side of the piston to the receiving reservoir, introducing water into the cylinder on the opposite side of the piston and forcing the piston through the cylinder to flow the gas from the cylinder into the reservoir.
Abstract:
A safety apparatus is for containers loaded by gas pressure, in particular the gas side (13) of hydropneumatic devices such as hydraulic accumulators (1). The safety apparatus has a connection device (19) that can be attached to the pressure chamber of the container to form a passage (25) between the gas side (13) of the container and the outside. A structure (27) normally blocks the passage (25) and under the influence of temperature can be transferred into a state that allows a flow path through the passage (25) to be cleared.