Abstract:
A tire assembly for a road vehicle is provided. The assembly includes a tire and first and second expandable chambers positioned within the tire. A series of actuators for selectively pumping air to the first and second chambers is provided, wherein the assembly includes a third chamber arranged between the first and second chambers. Each of the actuators is pneumatically connected to the first, second and third chambers by way of a radial air loop, wherein the radial air loop has a first chamber valve, a second chamber valve, an actuator valve, and a third chamber valve.
Abstract:
A tire with a cellular layer is provided. The tire includes a tire structure formed of at least one crown extended by two sidewalls and two beads. A base of each of the two beads is configured to be mounted onto a rim seat. The tire also includes a carcass-type reinforcing structure anchored into the two beads, and a layer that includes a cellular material, also referred to as a cellular layer. The cellular layer is positioned on an inner wall of the tire structure, such that the cellular layer is bonded to the tire structure over at most over 20% of a surface of the cellular layer and is not bonded to the tire structure elsewhere on the surface.
Abstract:
A wheel having a controlled pressure includes a rim associated with a tank adapted to be filled with a fluid to a first pressure; a tyre mounted on the rim and having an inner volume inflated to an operating pressure at a reference temperature, the operating pressure being lower than the first pressure; and at least one valve assembly adapted to establish a communication between the tank, the inner volume of the tyre and the external environment. The valve assembly includes a command valve, an exhaust valve and a compensation valve operatively associated with each other. The command valve controls communication between the tank and the inner volume of the tyre. The exhaust valve is connected to the external environment, to the inner volume, to the command valve and to the compensation valve. The compensation valve is connected to the exhaust valve and the command valve. The command valve includes an inner chamber connected with the exhaust valve and the compensation valve in such a manner that the command valve is operated by the exhaust valve and the compensation valve through a pressure variation of the inner chamber in response to a variation of the inner pressure of the tyre.
Abstract:
The invention is a high-efficiency wheel product for use with various ground vehicles. The product is designed to provide rolling support to the vehicle and to accommodate various surface conditions, for example, smooth pavement, rough pavement, potholes, dirt roads, and other conditions.The wheel product includes a multi-chambered pneumatic tire designed to minimize energy loss between the tire and a rolling surface by substantially reducing tire flex, a main source of energy loss in ground vehicles. Additionally, the product can reduce the need for conventional drive train elements such as shock absorbers.
Abstract:
A tire with a cellular layer is provided. The tire includes a tire structure formed of at least one crown extended by two sidewalls and two beads. A base of each of the two beads is configured to be mounted onto a rim seat. The tire also includes a carcass-type reinforcing structure anchored into the two beads, and a layer that includes a cellular material, also referred to as a cellular layer. The cellular layer is positioned on an inner wall of the tire structure, such that the cellular layer is bonded to the tire structure over at most over 20% of a surface of the cellular layer and is not bonded to the tire structure elsewhere on the surface.
Abstract:
A polyurethane-polymer composition suitable for preparing a lightweight tire support includes at least one isocyanate, at least one polyol, and at least one chain extender. A polyurethane-polymer composition can also include an additive such as a catalyst, a filler, a surfactant, a colorant, and a mold-release agent. A lightweight tire support can be prepared from a polyurethane-polymer composition by, for example, reaction injection molding. Such a tire support desirably has temperature stability and load-bearing capability.
Abstract:
The invention is directed to a high-speed, puncture proof tire including a tire casing having a tread portion and a pair of side wall portions and a plurality of small diameter pressurized tubes disposed within the tire casing. Each pressurized tube has an elongate body fabricated from film material that is sealed crosswise along the length of the body to define at least two compartments that contain gas-under pressure. The tubes can be oriented radially or circumferentially within the annular space of the tire casing. In another embodiment of the tire, at least one panel of film material resistant to shear forces is disposed within the annular space of the tire casing. The panel is sealed lengthwise thereof to define a plurality of small diameter pressurized tubes. Each pressurized tube is sealed crosswise along the length of the tube to define at least two compartments that contain gas under pressure.