Abstract:
The frequency of the alternating current to be supplied to the high-pressure discharge lamp is switched among a first frequency, a second frequency greater than the first frequency, and a third frequency smaller than or equal to the first frequency. In the switching, a period A, in which the alternating current of the third frequency is supplied, occurs at the beginning of each of the predetermined time intervals. A remainder of each of the predetermined time intervals includes a period B, in which the alternating current of the first frequency is supplied, and a period C, in which the alternating current of the second frequency is supplied, the periods B and C being alternately repeated, so as to control the period A to be longer than the period B and to have a length corresponding to a predetermined number of cycles, ranging from 5.5 to 50 cycles inclusive.
Abstract:
A high pressure discharge lamp lighting device comprising an inverter, an igniter, a controller, a pulse voltage detection circuit, and the starting pulse voltage regulation circuit. The inverter applies a lighting voltage to a high pressure discharge lamp. The controller applies the starting pulse voltage generated by the igniter to the high pressure discharge lamp. The pulse voltage detection circuit is configured to detect a voltage indicative of the starting pulse voltage to output a detection signal. The starting pulse voltage regulation circuit is configured to regulate the starting pulse voltage to a desired value of the starting pulse voltage on the basis of the detection signal. The pulse voltage detection circuit is configured to detect either one of the voltage developed in the specified circuit component of the igniter and the starting pulse voltage as the voltage indicative of the voltage indicative of the starting pulse voltage.
Abstract:
A method and apparatus are provided for generating light such as ultraviolet light from excimer-forming gases. Gases are excited by radio frequency alternating current powered electrodes (200, 210) to form excimers that will decay and emit vacuum ultraviolet light. The halogen concentration is optimized so as to optimize emissions from halogen excimers (Z2*) or mixed rare gas/halogen excimers (RGZ*). Emissions from rare gas excimers (RG2*) are maximized by maintaining the gas in the discharge region at a relatively low temperature, desirably below 700° K, so that the average kinetic energy of gas particles is less than the vibrational excitation energy of the excimer and substantially less than the dissociation energy of the excimer. Relatively large electrodes (202, 204) can be used to cool the plasma.
Abstract:
An electron emitter has an emitter section formed on a substrate, and a cathode electrode and an anode electrode formed on a same surface of the emitter section. A slit is formed between the cathode electrode and the anode electrode. A drive voltage from a pulse generation source is applied between the cathode electrode and the anode electrode, and the anode electrode is connected to the ground. A collector electrode is provided above the emitter section at a position facing the slit. The collector electrode is connected to a bias voltage source through a resistor. The emitter section is made of a piezoelectric material.
Abstract:
A noble gas discharge lamp of the present invention comprises an outer enclosure comprising a light emitting layer formed therein, and a pair of outer electrodes having tape shapes comprising a metal, which are adhered to the entire length of the outside of the outer enclosure so as to separate one outer electrode and the other outer electrode at a certain distance. The electrodes form a first opening portion and a second opening portion; wherein the outer enclosure is filled with at least one kind of noble gas under the confining pressure is in a range of 83 to 200 Torr. There is at least one nonlinear portion formed at at least one side portion of the outer electrodes.
Abstract:
A switching apparatus obtains a large switching current by multiplying the number of electrons emitted by field emission from a cold cathode. The switching apparatus is driven by an optical wave and includes a recess portion of an insulation layer formed on a silicon substrate, a cold cathode formed on the insulation layer comprising many comb-tooth like tips extending from one side above the recess portion, a gate electrode disposed on the recess portion on the side of the cold cathode, an anode formed on the insulation layer and extending from another side opposed facing to the one side above the recess portion, an optically transparent sealing member comprising a recess portion on its under surface for enclosing a dilute nitrogen gas in a vacuum space, and a semiconductor laser, supported on the sealing member by a support member, for irradiating a laser beam through the sealing member into the space.
Abstract:
Disclosed is hererin a quantum phase interference transistor comprising: an emitter for emitting electron waves into a vacuum; a gate electrode for controlling the phase difference between a plurality of electron waves; and a collector for collecting the electron waves; characterized in that the gate electrode has the construction of a capacitor.
Abstract:
A high-intensity discharge (HID) metal vapor lamp and starting apparatus includes a metal vapor lamp having an outer envelope containing a gas filled arc tube, the fill gas including xenon, the arc tube having a pair of spaced electrodes with a starting aid surrounding the arc tube intermediate the electrodes, a non-linear dielectric element shunting the spaced electrodes and a ballast means and an electrical conductor coupling the spaced electrodes to a base member connected to a low voltage source whereby starting of the metal vapor lamp from a low voltage source is effected.
Abstract:
A triggerable ceramic gas tube voltage breakdown device, particularly adapted for use in an electrical circuit for controlling the light output of a photoflash lamp, includes means for reducing the attenuation of an electrical trigger pulse in the region of the electrode gap due to the ceramic spacer tube. The electric field intensity in the region of the electrode gap resulting from the trigger pulse may be enhanced by disposing annular conductive material in the region and by connecting that material to a source of the trigger pulses. Alternatively or in conjunction therewith, the configuration of the ceramic spacer tube may be altered by removing material from the ceramic spacer tube in the region of the electrode gap, thereby enhancing the electric field intensity in that region resulting from the trigger pulses.
Abstract:
The invention relates to an electric device provided with a switch which is constructed as a discharge tube which comprises at least two main electrodes and a reversible hydrogen getter.According to the invention the discharge tube contains a rare gas so that the current flow in the conducting state of the switch is mainly ensured by that rare gas. The non-conducting stage of the switch can be obtained by heating the getter. Namely, the hydrogen pressure in the discharge tube then becomes so high that the discharge in the tube is extinguished. Heating of the getter is preferably effected by the heat developed by the current between the main electrodes. This results in a self extinguishing breakdown element.