Abstract:
An eFUSE is formed with a gate stack including a layer of embedded silicon germanium (eSiGe) on the polysilicon. An embodiment includes forming a shallow trench isolation (STI) region in a substrate, forming a first gate stack on the substrate for a PMOS device, forming a second gate stack on an STI region for an eFUSE, forming first embedded silicon germanium (eSiGe) on the substrate on first and second sides of the first gate stack, and forming second eSiGe on the second gate stack. The addition of eSiGe to the eFUSE gate stack increases the distance between the eFUSE debris zone and an underlying metal gate, thereby preventing potential shorting.
Abstract:
Multiplexing of information from a plurality of information flows into fixed-length packets such as, but not limited to, MPEG packets allows efficient utilization of bandwidth and also can be used to reduce transmission latency. In addition, utilizing MPEG packets and transport streams for octet multiplexing allows the packets carrying octet-multiplexed data to easily be integrated with other MPEG packets for other services that are commonly found in cable transmission networks of all coax, hybrid fiber coax, and/or all fiber. The multiplexing/demultiplexing of octets using MPEG packets generally is described by mappings that specify the use of octets in MPEG packets. Changes to allocations in a map generally should be propagated in a way that reliably ensures that both the transmitter and receiver have a consistent view of the octet mappings.
Abstract:
The disclosed invention relates to a process for converting ethylbenzene to styrene, comprising: flowing a feed composition comprising ethylbenzene in at least one process microchannel in contact with at least one catalyst to dehydrogenate the ethylbenzene and form a product comprising styrene; exchanging heat between the process microchannel and at least one heat exchange channel in thermal contact with the process microchannel; and removing product from the process microchannel. Also disclosed is an apparatus comprising a process microchannel, a heat exchange channel, and a heat transfer wall positioned between the process microchannel and heat exchange channel wherein the heat transfer wall comprises a thermal resistance layer.
Abstract:
Glucagon analogs are disclosed that exhibit both glucagon antagonist and GLP-1 agonist activity. In one embodiment, the glucagon antagonist/GLP-1 agonist comprises a modified amino acid sequence of native glucagon, in which the first one to five N-terminal amino acids of native glucagon is deleted and in which the alpha helix is stabilized.
Abstract:
Novel pyrrolopyrimidines as shown in formula (I): and pharmaceutically acceptable derivatives thereof. The compounds are useful in the inhibition of IGF-1R.
Abstract:
The invention relates to chemical compounds of formula (I), (Ia) and (Ib) or pharmaceutically acceptable salts thereof, which possess Edg-1 antagonistic activity and are accordingly useful for their anti-cancer activity and thus in methods of treatment of the human or animal body. The invention also relates to processes for the manufacture of said chemical compounds, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments for use in the production of an anti-cancer effect in a warm-blooded animal, such as man.
Abstract:
The disclosed technology relates to an apparatus, comprising: at least one microchannel, the microchannel comprising at least one heat transfer wall; a porous thermally conductive support in the microchannel in contact with the heat transfer wall; a catalyst or a sorption medium supported by the porous support; and a heat source and/or heat sink in thermal contact with the heat transfer wall.
Abstract:
Disclosed is a method for scanning and processing an image using the error diffusion screening technology, comprising: (1) scanning each pixel Mi of an nth line in an original image one by one and then storing a scanning result of the pixel Mi to an ith storage location; and (2) processing the stored result of the pixel Mi by using error diffusion and scanning pixels of an n+1th line in the original image until all pixels of the nth line have been processed and all pixels in the n+1th line have been scanned and stored, wherein once processing for the pixel Mi is completed, a scanning result of a pixel of the n+1th line is stored to the ith storage location previously occupied by the pixel Mi. Based on the method, the capacity for storing is only required to be able to store the data of one line in an image in the scanning direction, which saves the storage for bidirectional scanning. The method can optimize the hardware used to implement error diffusion and improve the operating efficiency. Also disclosed is a system for achieving the method.
Abstract:
Methods for controlling series or series-parallel reactions are described. Novel microchannel apparatus having mesoporous structures adjacent to bulk flow paths are described. Methods of synthesizing formaldehyde from methanol are also described.
Abstract:
Disclosed is a method for processing FM-AM mixed halftone images on a multi-bit depth imaging apparatus, which relates to a method for producing halftone dots in the field of image hard copying. In the prior art, since it is hard to avoid the impact of the error diffusion for the output apparatus to control the mixed dots with multi-bit imaging depth based on the error diffusion, the output of the mixed dots with multi-bit imaging depth cannot satisfy requirements of the apparatus. According to the method of the present invention, the dynamic algorithm for controlling the multi-bit mixed dots is used for screening based on the existing mixed screening process using dual-feedback error diffusion. Furthermore, multi-bit halftone images with high quality and rich gradations can be output by the multi-bit depth imaging apparatus. The method of the present invention can solve the phenomenon of sawtooth in the margins of the mixed dots output by the conventional single-bit apparatus and obtain the FM-AM mixed dots with the effect of high resolution and continuous gradations, which are output under low resolution.