Abstract:
The present invention relates to a new catalyst system for fluorous biphasic catalysis processes which comprises functionalized polymeric beads, monodisperse SiO2 or SiO2 flakes associated with the catalyst. These functionalized particles are used as a support for catalysts in fluorous biphasic catalysis (FBC).
Abstract:
The present invention relates to a catalyst composition for homopolymerization or copolymerization of olefins comprising: (a) a solid catalyst precursor comprising a transition metal compound of group IVB, VB, or VIB of the periodic table, a magnesium compound and aliphatic polyketone particles; and (b) a cocatalyst comprising an aluminum alkyl, an aluminoxane or mixtures thereof; and a process for homopolymerisation or copolymerisation of olefins.
Abstract:
A process of forming a polyolefin catalyst component includes contacting a metal compound of the formula MR2 with a diketone to form a metal bis(diketonate) having the formula M(OCRCR′CRO)2, wherein M is a Group IIA or Group VIIB metal, and wherein R and R′ are each hydrocarbyls or substituted hydrocarbyls having from 1 to 20 carbons atoms. Catalyst components, catalysts, polyolefin polymers, catalysts systems, and methods of preparing same are disclosed.
Abstract:
Substituted monocyclopentadienyl, monoindenyl, monofluorenyl and heterocyclopentadienyl complexes of chromium, molybdenum or tungsten in which at least one of the substituents on the cyclopentadienyl ring carries a donor function which is bonded rigidly, not exclusively via sp3-hybridized carbon or silicon atoms, and a process for the polymerization of olefins.
Abstract:
A novel chiral lead catalyst comprising a lead compound of the following formula: Pb(ORf)2 (wherein Rf represents a fluorine-containing alkylsulfonyl group) and a chiral crown ether compound having the structure of the following formula: which is applicable in a variety of reactions, and enables simple reaction operations with high yield and high optical selectivity, is provided. Also provided is a method of asymmetric synthesis using the same.
Abstract:
A catalyst composition for living free radical polymerization. The catalyst composition includes a transition metal complex MXp and a ligand, wherein M is a transition metal; X is halogen, —NO2, —NCS, —NCO, —SCN, —CN, —N3, —SO4, carboxylate group, or —PF6; p is the valence of the transition metal, the ligand is represented by formula (I): wherein R1 can be the same or different and is C1-20 alkyl, C6-20 aryl, C7-20 alkylaryl, C7-20 arylalkyl, or heterocyclic groups; R2 can be the same or different and is H, C1-20 alkyl, C6-20 aryl, C7-20 alkylaryl, C7-20 arylalkyl, heterocyclic groups, alkyl sulfide groups, nitrile groups, alkylsilyl, or ester groups; n is an integer of 0 to 6; and A is deleted or an S or O atom, wherein the molar ratio of the transition metal complex MXp and the ligand is 1 to 4. The catalyst composition of the present invention can be used to polymerize (meth)acrylic, vinyl, vinylidene, and diene monomers, and the polymer obtained has narrow polydispersity.
Abstract:
The present invention provides an improved acyclic anionic six-electron-donor ancillary ligand suitable for being bonded in a transition metal complex. The present invention also provides a transition metal complex that includes at least one acyclic anionic six-electron-donor ancillary ligand which is suitable for use as an olefin polymerization catalyst. The complex includes a Group 3 to 10 transition or lanthanide metal and one or more anionic or neutral ligands in an amount that satisfies the valency of the metal such that the complex has a net zero charge. The present invention also discloses a method for making transition metal complex and a method for using the complex for olefin polymerization.
Abstract:
The present invention relates to a catalyst for polymerization and co-polymerization of ethylene. More particularly, the present invention relates to a solid titanium catalyst containing magnesium, wherein said catalyst is produced by preparing a magnesium solution by contact-reacting a halogenated magnesium compound with alcohol; reacting said solution with an ester compound having at least one hydroxy group, or a phosphorous compound and a silicon compound having alkoxy groups; producing a solid component with an adjusted particle morphology by adding a mixture of a titanium compound and a silicon compound; reacting the same with an aluminum compound; and then reacting the same with a titanium compound, or a titanium compound and a vanadium compound. As a result, the catalyst of the present invention has high catalytic activity with excellent catalyst morphology.
Abstract:
A catalyst composition for the polymerization of olefins is provided which comprises a catalyst compound and a co-catalyst or a support material or both a co-catalyst and a support material, wherein the catalyst compound comprises a transition metal of Group 4, 5 or 6, an organic compound containing at least one lone pair of electrons, a divalent radical and a Lewis basic group having the following formula: —C(R7)=Z1R8, (i) wherein R7 and R8 are each independently selected from the group consisting of hydrogen and C1-C8 hydrocarbyl groups, and wherein R7 and R8 are not linked or are linked to form a saturated or unsaturated ring; and Z1 is a nitrogen atom or a phosphorus atom, which bonds to M; or wherein: Z2 is an oxygen atom, a sulphur atom or a selenium atom, which bonds to the transition metal compound; and R9, R10 and R11 are each independently selected from the group consisting of hydrogen and C1-C8 hydrocarbyl groups, wherein no pair or one pair of substituents selected from R9, R10 and R11 are linked to form a saturated or unsaturated ring.
Abstract:
A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with halogenating/titanating agents, and an organoaluminum preactivating agent. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution and the fluff morphology of the resulting polyolefins.