Abstract:
There is provided a composition comprising: (i) a hyperbranched polymer having peripheral reactive groups comprising epoxy functional groups and hydroxyl functional groups; and (ii) a compound having one or more hydrophilic functional groups, wherein the amount of epoxy functional groups relative to the total number of peripheral reactive groups does not render the hyperbranched polymer from being indispersible in an aqueous solvent. There is also provided a method of preparing the same and uses thereof.
Abstract:
A method of manufacturing a mineral fiber thermal insulation product comprises the sequential steps of: Forming mineral fibers from a molten mineral mixture; spraying a substantially formaldehyde free binder solution on to the mineral fibers, the binder solution comprising: a reducing sugar, an acid precursor derivable from an inorganic salt and a source of nitrogen; Collecting the mineral fibers to which the binder solution has been applied to form a batt of mineral fibers; and Curing the batt comprising the mineral fibers and the binder which is in contact with the mineral fibers by passing the batt through a curing oven so as to provide a batt of mineral fibers held together by a substantially water insoluble cured binder.
Abstract:
There is provided a dispersion composition containing (A) a metal oxide particle having a primary particle diameter of 1 nm to 100 nm, (B) a polymer compound represented by the specific formula having a weight average molecular weight of 5,000 to 8,000 and an acid value of 70 to 90 mgKOH/g, and (C) a solvent, and a curable composition containing the dispersion composition and (D) a polymerizable compound.
Abstract:
The organic-inorganic composite coating film of the present invention is a composite coating film wherein a complex having a polyamine segment is combined in a matrix composed of an inorganic oxide, and has a fine pore pattern on the surface. The aqueous coating composition of the present invention includes a copolymer having a polyamine segment, a metal alkoxide, and an aqueous medium.
Abstract:
An excellent mesostructured thin film, and a process for producing the mesostructured thin film are provided. In the process, the mesostructured thin film having an oriented rod-like pore structure is formed on a surface of a polymer compound containing a sequence of two or more adjacent methylene groups in the repeating unit of the molecule.
Abstract:
The invention provides coating compositions comprising a reactive component (a) which is substantially free of any heteratoms and is a not a crystalline solid at room temperature and which comprises from (i) 12 to 72 carbon atoms, and (ii) at least two functional groups, and (b) a crosslinking agent comprising a plurality of functional groups (iii) reactive with the functional groups (ii) of compound (a), wherein functional groups (ii) and (iii) are selected such that reaction there between produces a thermally irreversible chemical linkage. The coating compositions of the invention provide improved solids, chip resistance, flexibility and/or scratch & mar resistance while maintaining desirable and/or improved performance characteristics with regard to environmental etch, relative humidity, QCT, chip resistance, thermoshock resistance, cold crack resistance, adhesion and the like.
Abstract:
A coating composition for producing films having improved scratch and mar characteristics. The coating composition incorporates a polyester polycarbamate resin composition, a first cross-linking agent, and a cross-linkable resin to form the film. The resin composition is the reaction product of a first compound having a plurality of hydroxyl groups with a carbamate compound reactive with the hydroxyl groups of the first compound and added in an amount sufficient to form a carbamated intermediary. The carbamated intermediary has at least one primary carbamate group available for cross-linking and has unreacted hydroxyl groups. Then, a silyl compound having a terminal isocyanate group is reacted with the unreacted hydroxyl groups of the carbamated intermediary. The silyl compound also has silylalkoxy groups available for secondary cross-linking. The first cross-linking agent and the cross-linkable resin react with the primary carbamate groups and the silylalkoxy groups, respectively, to produce the film having improved scratch and mar characteristics.
Abstract:
An improved aqueous cathodic electrocoating composition having a binder of an epoxy-amine adduct and a polyisocyanate crosslinking agent; wherein the improvement is the use of a polyisocyanate crosslinking agent having at least one crosslinkable morpholine dione group per molecule. Electrodeposited finishes are formed that have reduced volatile emissions and film weight loss when heated to cure.
Abstract:
A multicoat system comprising (I) at least one constituent (IA) comprising mesomorphic polyelectrolyte complexes prepared by reacting, in a liquid phase (IB), at least one polymeric and/or oligomeric, organic, anionic polyelectrolytes (IC) with at least one polymeric and/or oligomeric, organic, cationic polyelectrolytes (ID) and/or at least one cationic surfactant (IE) or at least one polymeric and/or oligomeric, organic, cationic polyelectrolytes (ID) with at least one anionic surfactant (IF) in a stoichiometric or non-stoichiometric ratio, pouring the resulting liquid phase (IG) onto a substrate or into a mold and allowing it to solidify, and heat-treating the resulting solid (IH); and (II) at least one coat (IIA), which is three-dimensionally crosslinked, prepared by applying at least one aqueous, thermally curable coating material (IIB) comprising at least one binder (IIC) and at least one crosslinking agent (IID), to the surface of the constituent (IA), and thermally curing the resulting wet film (IIE).
Abstract:
A process for providing a protective coating on a substrate comprises (1) applying to the substrate a coating composition comprising a homogenous mixture comprising an inorganic sol and polymerisable organic species, the inorganic sol being obtainable by hydrolysing hydrolysable inorganic monomer precursors to form inorganic monomers; (2) polymerising the polymerisable organic species; and (3) polymerising the inorganic monomers, wherein polymerisation of the organic monomers is initiated prior to completion of polymerisation of the inorganic monomers, to form a solid coating on the substrate. The resulting coating comprises interpenetrating inorganic and organic polymer networks, and may be formulated to be transparent. It is useful in the protection of a wide variety of substrates, and in particular for providing scratch/abrasion resistance to low melting point plastics materials such as polycarbonates and polyacrylates.