Abstract:
An anchor sleeve for securing a therapy delivery element, such as a stimulation lead or catheter, within a living body, that includes an inner sleeve with pre-formed locations of weakness that facilitate localized deformation. The anchor includes a deformable outer sleeve with a primary lumen extending along an axis. The outer surface of the outer sleeve includes a plurality of suture grooves oriented generally concentric to the axis. The inner sleeve includes a plurality of beams connected at deflection regions arranged around a secondary lumen. The inner sleeve is located in the primary lumen adjacent to the suture grooves so that the secondary lumen is generally concentric with the primary lumen. A plurality of locations of weakness are preformed in each of the beams to facilitate localized deformation in response to a radially inward force applied around the suture grooves by a suture material.
Abstract:
An RF filter for an active medical device (AMD), for handling RF power induced in an associated lead from an external RF field at a selected MRI frequency or range frequencies includes a capacitor having a capacitance of between 100 and 10,000 picofarads, and a temperature stable dielectric having a dielectric constant of 200 or less and a temperature coefficient of capacitance (TCC) within the range of plus 400 to minus 7112 parts per million per degree centigrade. The capacitor's dielectric loss tangent in ohms is less than five percent of the capacitor's equivalent series resistance (ESR) at the selected MRI RF frequency or range of frequencies.
Abstract:
An MRI-compatible electronic medical therapy system includes an active medical device connected to a plurality of electrodes. An independently actuatable switch selectively electrically connects at least one circuit protection device in electrical series with the electrodes and the medical device. The circuit protection device is adapted to permit current flow therethrough during normal medical device related therapy, but substantially prevent current flow therethrough in the presence of an induced electromagnetic field.
Abstract:
An elevated feedthrough is attachable to a top or a side of an active implantable medical device. The feedthrough includes a conductive ferrule and a dielectric substrate. The dielectric substrate is defined as comprising a body fluid side and a device side disposed within the conductive ferrule. The dielectric substrate includes a body fluid side elevated portion generally raised above the conductive ferrule. At least one via hole is disposed through the dielectric substrate from the body fluid side to the device side. A conductive fill is disposed within the at least one via hole forming a hermetic seal and electrically conductive between the body fluid side and the device side. A leadwire connection feature is on the body fluid side electrically coupled to the conductive fill and disposed adjacent to the elevated portion of the dielectric substrate.
Abstract:
Suture anchors for securing therapy delivery elements, such as stimulation leads or catheters, within a living body. The suture anchor includes an inner sleeve constructed with an inner layer of a softer, more pliable material that easily conforms to the therapy delivery element to reduce slippage and an outer layer constructed from a harder, stiffer durometer material that protects the therapy delivery elements from damage due to over-tightening the tie down sutures. A suture material located in the suture groove is tensioned to apply a radial compressive force. The reinforcing structure spreads the radial compressive force along a greater surface area of the therapy delivery element.
Abstract:
In some examples, a lead identification system includes a first set of first lead indicators and a second set of second lead indicators. Each of the first lead indicators is configured to removably attach to at least one of a first therapy delivery element, a first epidural needle, or a first connector to uniquely identify at least one of the first therapy delivery element, the first epidural needle, or the first connector during implantation of the first therapy delivery element in the patient. Each of the second lead indicators is configured to removably attach to at least one of a second therapy delivery element, a second epidural needle, or a second connector to uniquely identify at least one of the second therapy delivery element, the second epidural needle, or the second connector during implantation of the second therapy delivery element in the patient.
Abstract:
A multilayer helical wave filter having a primary resonance at a selected RF diagnostic or therapeutic frequency or frequency range, includes an elongated conductor forming at least a portion of an implantable medical lead. The elongated conductor includes a first helically wound segment having at least one planar surface, a first end and a second end, which forms a first inductive component, and a second helically wound segment having at least one planar surface, a first end and a second end, which forms a second inductive element. The first and second helically wound segments are wound in the same longitudinal direction and share a common longitudinal axis. Planar surfaces of the helically wound segments face one another, and a dielectric material is disposed between the facing planar surfaces of the helically wound segments and between adjacent coils of the helically wound segments, thereby forming a capacitance.
Abstract:
An energy management system that facilitates the transfer of high frequency energy induced on an implanted lead or a leadwire includes an energy dissipating surface associated with the implanted lead or the leadwire, a diversion or diverter circuit associated with the energy dissipating surface, and at least one non-linear circuit element switch for diverting energy in the implanted lead or the leadwire through the diversion circuit to the energy dissipating surface. In alternate configurations, the switch may be disposed between the implanted lead or the leadwire and the diversion circuit, or disposed so that it electrically opens the implanted lead or the leadwire when diverting energy through the diversion circuit to the energy dissipating surface. The non-linear circuit element switch is typically a PIN diode. The diversion circuit may be either a high pass filter or a low pass filter.
Abstract:
A temporary medical lead in which stimulating electrical energy is transmitted to body tissue through the lead electrodes via ionic conduction within the hydrogel material is described. The hydrophilic hydrogel material consists of a porous structure into which conductive salt ions are diffused. In addition the structure of the hydrogel material can be loaded with a single or combination of therapeutic drugs which is elutable from the electrode.
Abstract:
The present disclosure involves a charging system for charging an implanted medical system. The charging device includes a replenishable power supply. The charging device includes a coil assembly electrically coupled to the power supply. The coil assembly includes a primary coil and a plurality of sense coils positioned proximate to the primary coil. The charging device includes electrical circuitry operable to: measure an electrical parameter of the coil assembly; and determine a position of the coil assembly relative to a position of the implanted medical device based on the measured electrical parameter. The charging device includes a visual communications interface operable to: receive an input from the electrical circuitry; and visually display on a screen the position of the coil assembly relative to the position of the implanted medical device based on the input received from the electrical circuitry.