Abstract:
A multichip module comprises a multilayer substrate circuit having conductive patterns on its surface(s) to which microelectronic device(s) are attached. A part of the substrate is flexible and bifurcated. Two rigid members are attached lengthwise, one on either side of the substrate, and the free ends of the bifurcation are reflexed respectively about these members and bonded to them. Electrodes are located on the bifurcations so that they will be exposed outwardly and/or downwardly after reflexing. The module may further be provided with protective heat spreading covers. The electrodes and rigid members may be configured to engage a mating socket or they may be solderable to a printed circuit board.
Abstract:
The present invention stacks integrated circuit packages into circuit modules. In a preferred embodiment, solder paste and primary adhesive respectively are applied to selected locations on the flex circuitry. Supplemental adhesive is applied to additional locations on the flex circuitry, CSP, or other component. The flex circuitry and the CSP are brought into proximity with each other. During solder reflow operation, a force is applied and the CSP collapses toward the flex circuitry, displacing the primary adhesive and the supplemental adhesive. The supplemental adhesive establishes a bond providing additional support to the flex circuitry. In another embodiment, CSPs or other integrated circuit packages are bonded to each other or to other components with a combination of adhesives. A rapid bond adhesive maintains alignment of the bonded packages and/or components during assembly, and a structural bond adhesive provides additional strength and/or structural integrity to the bond.
Abstract:
A flexible printed circuit (FPC) film includes a film body portion connected to a display panel, and an electromagnetic (EM) wave blocking portion extended from the film body portion, wherein the EM wave blocking portion covers a portion of a driving chip disposed on the display panel.
Abstract:
Provided circuit modules employ flexible circuitry populated with integrated circuitry (ICs). The flex circuitry is disposed about a rigid substrate. Contacts distributed along the flexible circuitry provide connection between the module and an application environment. A strain relief portion of the flex circuitry has preferably fewer layers than the portion of the flex circuitry along which the integrated circuitry is disposed and may further may exhibit more flexibility than the portion of the flex circuit populated with integrated circuitry. The substrate form is preferably devised from thermally conductive materials.
Abstract:
The present invention stacks packaged integrated circuits into modules that conserve PWB or other board surface area. The present invention can be used to advantage with packages of a variety of sizes and configurations ranging from larger packaged base elements having many dozens of contacts to smaller packages such as, for example, die-sized packages such as DSBGA. In a preferred embodiment devised in accordance with the present invention, a base element CSP integrated circuit and a support element CSP integrated circuit are aggregated through a flex circuit having at least two conductive layers that are patterned to selectively connect the two CSP elements. A portion of the flex circuit connected to the support element is folded over the base element to dispose the support element above the base element while reducing the overall footprint. The flex circuit provides a thermal and electrical connection path between the module and an application environment such as a printed wiring board (PWB).
Abstract:
Multiple DIMM circuits or instantiations are presented in a single module. In some embodiments, memory integrated circuits (preferably CSPs) and accompanying AMBs, or accompanying memory registers, are arranged in two ranks in two fields on each side of a flexible circuit. The flexible circuit has expansion contacts disposed along one side. The flexible circuit is disposed about a supporting substrate or board to place one complete DIMM circuit or instantiation on each side of the constructed module. In alternative but also preferred embodiments, the ICs on the side of the flexible circuit closest to the substrate are disposed, at least partially, in what are, in a preferred embodiment, windows, pockets, or cutaway areas in the substrate. Other embodiments may only populate one side of the flexible circuit or may only remove enough substrate material to reduce but not eliminate the entire substrate contribution to overall profile. The flexible circuit may exhibit one or two more conductive layers, and may have changes in the layered structure of have split layers. Other embodiments may stagger or offset the ICs or include greater numbers of ICs.
Abstract:
A form standard provides a physical form that allows many of the varying package sizes found in the broad family of CSP packages to be used to advantage while employing a standard connective flex circuitry design that is disposed about the form. In a preferred embodiment, the form standard will be devised of heat transference material such as copper to improve thermal performance.
Abstract:
The present invention is directed to an optical pick-up apparatus used for recording/reproduction of an optical disk, which comprises an optical pick-up (17) caused to undergo feed operation in the radial direction of optical disk (2), and for performing write or read operation of information signals with respect to the rotating optical disk, and a flexible printed wiring board (45) having one end portion (45a) connected to the optical pick-up, and the other end portion (45d) provided in a manner extended in the feed direction of the optical pick-up. The flexible printed wiring board includes a folded portion (45g) folded back toward the bottom surface portion side of the optical pick-up, and a bending displacement portion (45h) for allowing folded position of the folded portion to undergo displacement in a manner following the feed operation of the optical pick-up, wherein a slit (47) for escaping a projected portion (17b) projected from the bottom surface portion of the optical pick-up is provided at the folded portion.
Abstract:
An optical pickup device includes an optical system unit, a circuit board to control the optical system unit, and send and receive signals, a housing to place the optical system unit and the circuit board, and a flexible printed circuit board to connect electrically with the circuit board, extend to an outside from the housing, and fold back an extended portion, an extended direction of which is changed, in which the flexible printed circuit board is folded back so as to be faced to a side surface of the housing positioned at an extended proximal portion of the flexible printed circuit board, and a dead space of an optical disc apparatus to be mounted with the optical pickup device can be effectively used without making the apparatus large and thick, taking an inner space widely.
Abstract:
A coil assembly of a disk device includes a support frame on which a voice coil is fixed and a board unit connected to the support frame. The board unit has a main FPC extending from a base portion and a connecting portion extending from one side of an extended end portion of the main FPC. The connecting portion comprises a first connecting portion which extends in a longitudinal direction of the main FPC and has a plurality of first connection pads, a junction portion extending from the first connecting portion, and a second connecting portion which extends in the longitudinal direction of the main FPC from the junction portion and has a plurality of second connection pads. The first and second connecting portions are fixed to first and second support surfaces, respectively, of the support frame.