Abstract:
A color filter having a bi-layer metal grating is formed by nanoimprint lithography. Nanoimprint lithography, a low cost technology, includes two alternatives, i.e., hotembossing nanoimprint lithography and UV-curable nanoimprint lithography. Manufacture steps comprises providing a substrate with a polymer material layer disposed thereon. A plurality of lands and grooves are formed in the polymer material layer, and a first metal layer and a second metal layer are disposed on the surfaces of the lands and grooves, respectively. Finally, a color filter having a bi-layer metal grating is obtained.
Abstract:
A pixel structure of a color filtering array substrate includes a color filtering layer, a black matrix layer, and an electrode layer. The black matrix layer surrounds the color filtering layer. The electrode layer covers the color filtering layer and the black matrix layer. Besides, the electrode layer has at least one opening therein, and the opening is located above the black matrix layer.
Abstract:
An optical film and a liquid crystal display are provided. The liquid crystal display includes a twisted nematic type liquid crystal panel and a backlight module. The liquid crystal panel includes a bottom polarizer, a liquid crystal cell, and a top polarizer. The liquid crystal cell is placed between the bottom polarizer and the top polarizer. The backlight includes a reflective polarizer and a half-wave plate, and the half-wave plate is placed on the reflective polarizer. The transmission axis of the bottom polarizer and the principle axis of the bottom polarizer differ a first angle. The transmission axis of the bottom polarizer and the reflective polarizer differ a second angle. The first angle is half of the second angle.
Abstract:
A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.
Abstract:
Ionic interactions are monitored to detect hybridization. The measurement may be done measuring the potential change in the solution with the ion sensitive electrode (which may be the conducting polymer (e.g., polyaniline) itself), without applying any external energy during the binding. The double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode—the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective. Polyaniline on the surface of nylon film forms a positively charged polymer film. Thiol linkage can be utilized for polyaniline modification and thiol-modified single strand oligonucleotide chains can be added to polyaniline. The sensitivity is because the double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode as the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective.
Abstract:
A driving method for reducing the color shift suitable for driving a display panel is disclosed. The display panel includes at least one scan line, at least one data line, and at least one pixel unit electrically connected to the scan line and the data line. The driving method includes the following steps. First, turn on the pixel unit by the scan line during a frame period. Transmit a frame signal to the pixel unit by the data line during the frame period as the pixel unit is turned on. Turn on the pixel unit by the scan line between the present frame period and the next frame period. Transmit a revising signal to the pixel unit by the data line between the present frame period and the next frame period as the pixel unit is turned on, so as to reduce the color shift of the pixel unit.
Abstract:
A stacked chip semiconductor package may be formed in a “package in package” arrangement. The internal package may include two substrates. One substrate may have two dice stacked on each of two opposed sides and the other substrate may have two dice stacked on it as well. The two stacked substrates may be separated by molding compound and then electrically coupled to a third substrate. Thereafter, the entire assembly may be encapsulated.
Abstract:
The present invention provides an optical head with a single or multiple sub-wavelength light beams, which can be used in arenas such as photolithography, optical storage, optical microscopy, to name a few. The present invention includes a transparent substrate, a thin film, and a surface structure with sub-wavelength surface profile. The incident light transmits through the transparent substrate, forms a surface plasma wave along the sub-wavelength aperture located within the thin film, and finally re-emits through spatial coupling with the sub-wavelength profile of the surface structure. As the coupled re-emitting light beam or light beams can maintain the waist less than that of the diffraction limit for a few micrometers out of the surface with sub-wavelength profile in many cases, this invention can have applications ranging from micro or nano manufacturing, metrology, and manipulation by using light beams with waist smaller than the diffraction limit.
Abstract:
A method for doping fin structures in FinFET devices includes forming a first glass layer on the fin structure of a first area and a second area. The method further includes removing the first glass layer from the second area, forming a second glass layer on the fin structure of the first area and the second area, and annealing the first area and the second area to dope the fin structures.
Abstract:
The present invention enables the production of improved high-reliability, high-density semiconductor devices. The present invention provides the high-density semiconductor devices by decreasing the size of semiconductor device structures, such as gate channel lengths. Short-channel effects are prevented by the use of highly localized halo implant regions formed in the device channel. Highly localized halo implant regions are formed by a tilt pre-amorphization implant and a laser thermal anneal of the halo implant region.