Abstract:
In accordance with the invention, there are surfaces exhibiting anisotropic wetting, microfluidic devices and microreactors including the surfaces and methods of controlling anisotropic wetting behavior of the surfaces. The exemplary surface can include a substrate and a plurality of rectangular shaped structures arranged to form a macroscopic pattern over the substrate, wherein the plurality of rectangular shaped structures delineate a top surface of the rectangular structures from a surface of the substrate, the rectangular shaped structures including substantially vertical walls having a height of about 100 nm to about 10 μm and wherein the shape of the macroscopic pattern, the height of the substantially vertical walls, and a surface chemistry of the top surface controls anisotropic wetting at the top surface of the rectangular structures.
Abstract:
Medical imaging devices may comprise an array of ultrasonic transducer elements. Each transducer element may comprise a substrate having a doped surface creating a highly conducting surface layer, a layer of thermal oxide on the substrate, a layer of silicon nitride on the layer of thermal oxide, a layer of silicon dioxide on the layer of silicon nitride, and a layer of conducting thin film on the layer of silicon dioxide. The layers of silicon dioxide and thermal oxide may sandwich the layer of silicon nitride, and the layer of conducting thin film may be separated from the layer of silicon nitride by the layer of silicon dioxide.
Abstract:
A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.
Abstract:
Exemplary embodiments provide methods for planarizing a semiconductor surface. In embodiments, the disclosed planarizing methods can include a chemical mechanical planarization (CMP) process using a slurry-free solution that includes hydrogen peroxide (H2O2) but is free of particles such as oxide particles. A semiconductor surface (e.g., germanium) can then be planarized to provide a desirable surface roughness. In embodiments, high-quality Group III-V materials can be formed on the planarized semiconductor surface.
Abstract translation:示例性实施例提供了用于平坦化半导体表面的方法。 在实施例中,所公开的平面化方法可以包括使用包含过氧化氢(H 2 O 2)但不含诸如氧化物颗粒的颗粒的无浆液的化学机械平面化(CMP)工艺。 然后可以将半导体表面(例如,锗)平坦化以提供期望的表面粗糙度。 在实施例中,可以在平坦化的半导体表面上形成高质量的III-V族材料。
Abstract:
An inorganic nanoparticle array is self-assembled onto an unpatterned or patterned, peptide-functionalized substrate surface using peptide constructs comprising a substrate-binding peptide and a mineralization peptide.
Abstract:
The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.
Abstract:
A dual data rate flip-flop circuit for reducing single event upset errors in the flip-flop circuit including two or more latch circuits connected in parallel. The latch circuits each have a clock input, data input, and latch circuit output. The dual data rate flip-flop circuit also includes a C-element, which has a plurality of inputs and a C-element output. The outputs of the latch circuits are provided to inputs of the C-element, and a keeper circuit is connected to the C-element output. An output buffer inverter connects to the C-element output and has an output corresponding to the dual data rate flip-flop circuit output.
Abstract:
In accordance with various embodiments, there are nanostructured materials including WS2 nanostructures and composites of WS2 nanostructures and other materials and methods for synthesizing nanostructured materials. The method can include providing a plurality of precursor materials, wherein each of the plurality of precursor materials can include a tungsten reactant. The method can also include flowing, for a reaction time, a substantially continuous stream of carbon disulfide (CS2) vapor in a carrier gas over the plurality of precursor materials at a temperature in the range of about 700° C. to about 1000 C, wherein the reaction time is sufficient to permit the tungsten reactant to react with carbon disulfide to form a plurality of tungsten disulfide (WS2) nanostructures.
Abstract:
Exemplary embodiments provide methodologies for generating structures of filamentous carbon (or carbon filaments) with controlled geometries. In one exemplary embodiment of forming the carbon filament structure, a metal template can be exposed to a fuel rich gaseous mixture to form a carbon filament structure at an appropriate gas flow and/or at an appropriate temperature on the metal template. The metal template can have one or more metal surfaces with controlled geometries. Carbon filament structures can then be grown on the metal surfaces having corresponding geometries (or shapes) in the growth direction. The carbon filament structure can be two or three dimensional and can have high density. In various embodiments, the metal template can be removed to leave a self-supporting carbon filament structure.
Abstract:
The present invention includes a magnetically susceptible polymer component, a method of making the same, and apparatuses and systems for mixing, separating or localizing a magnetically susceptible polymer compound in a reaction. The magnetically susceptible polymer component includes a polymer and a magnetically susceptible particle of a predetermined size, which yields a component having a much-improved magnetic reactivity due to the increase in magnetic material by mass percentage. The apparatuses and systems of the present invention employ controllable magnetic fields distributable in perpendicular directions in order to precisely control the orientation, position and relative motion of any magnetically susceptible components within a reaction vessel.