Abstract:
An active-matrix substrate 30 includes multiple function lines 31, a structure for fixing up the arrangement of the function lines, a first conductive layer 43, a second conductive layer 42, multiple transistors 32 and multiple pixel electrodes 33. Each of the function lines 31 includes: a core 36, at least the surface of which has electrical conductivity; an insulating layer 37 that covers the surface of the core; and a semiconductor layer 38 that covers the insulating layer. Some portions of the first and second conductive layers 43 and 42 overlap with the respective semiconductor layers of the function lines but the others not. The transistors 32 are provided so as to have their channel defined as a region 44 in the semiconductor layer by the first and second conductive layers. The pixel electrodes 33 are electrically connected to the first conductive layer 43.
Abstract:
A semiconductor device includes: a photosensitive section essentially composed of a PN junction between a semiconductor multilayer structure of the first conductivity type and a first semiconductor layer of the second conductivity type; and a partitioning portion for splitting the photosensitive section into a plurality of regions. The semiconductor multilayer structure of the first conductivity type includes: a semiconductor substrate of the first conductivity type; a first semiconductor layer of the first conductivity type; and a second semiconductor layer of the first conductivity type. The partitioning portion includes a third semiconductor layer of the first conductivity type extending from the first semiconductor layer of the second conductivity type so as to reach the second semiconductor layer of the first conductivity type.
Abstract:
A photodiode structure augmented with active area photosensitive regions is used for detecting impinging radiation. The photodiode includes a semiconductor base layer doped with impurities of a first carrier type, a field oxide layer disposed upon the base layer with an opening formed therethrough, a plurality of auxiliary oxide layers wherein each is separately disposed upon the base layer, and a semiconductor diffusion layer doped with impurities of a second carrier type arranged upon the base layer and in contact with the oxide layers. When the photodiode is electrically energized, a plurality of integral photosensitive regions is created within the depletion region to facilitate the detection of impinging radiation at an increased quantum efficiency.
Abstract:
An improved structure of a photo sensor is disclosed. Its structural feature is that a PIN photo diode is allocated in a MOSFET, by means of enlarging the detected small photo current from PIN photo diode by the MOSFET; so as to avoid the shortcoming of conventional PIN photo diode, and enhance the sensitivity of photo sensing.
Abstract:
The specification describes lightwave systems with remotely powered photoelectric generators. Optical power transmitted through the fiber is incident on a remotely located photodiode array. High power conversion efficiency coupled with a specially designed diode array generates sufficient power to operate electromechanical or electrooptic apparatus in the remote station. Long wavelength photodiodes are serially connected to increase the voltage to practical operating levels. In a communication system, with an optical signal transmitted with the optical power, multiplexers are used for separating the optical power from the optical signal. Also disclosed are optimally designed photodetector arrays in which the photodetector elements are segments of a circular or polygonal circularly symmetric array to increase the fill factor of the array.
Abstract:
To selectively grow a P type silicon layer and a Si/Ge.sub.x Si.sub.1-x superlattice layer under low temperature conditions in the area encircled with a groove, at least the side walls of which consist of silicon oxide film, which is formed in the silicon substrate. Thereby, the leak at the side of the superlattice layer can be reduced. Furthermore, by burying a metal film in the groove, the loss of light at the side of the superlattice layer can be suppressed to the minimum. Thus a light receiver having silicon/germanium silicon-mixed-crystal layer is stably formed in a silicon semiconductor substrate and optical absorption efficiency can be improved.
Abstract:
Optoelectronic device integrating a photodetector having two diodes arranged side by side, constructed from layers of semiconductor material on a substrate that also incorporates a light guide for directing light to the diodes. The two identical, juxtaposed diodes (D1, D2) are arranged head to tail. The diode ensuring the photodetection is that which is reverse biased.
Abstract:
A semiconductor integrated circuit device with a built-in photosensor is provided with a light shielding aluminum film which is formed on a whole surface of the semiconductor integrated circuit device continuously to prevent faulty operation of the semiconductor integrated circuit because of incident light. In order to reduce parasitic capacity generated between a light shielding aluminum film and a wiring for transmitting a high-frequency signal or other elements whereto a high-frequency signal is applied, a light shielding aluminum film is partially removed on the wiring and other elements as well as a photosensor and a pad.
Abstract:
In a semiconductor image position sensitive device having a photoconductive layer and a resistive layer thereon, an image position sensitive region is divided into a plurality of sections and an output electrode is provided on each boundary between the sections. Firstly, by use of the output electrode flanking a plurality of the sections, an image existing section, which is narrower than the width of the plurality of the sections, is defined. Secondly, an image position within the image existing section is detected by use of the output electrodes flanking the image existing section. And finally, from the position of the previously defined image existing section and the image position within the image existing section, the image position is determined. The resolution of image position sensing can be improved in proportion to the number of the sections.
Abstract:
A composite unipolar-bipolar semiconductor device in which a sourceless field-effect transistor structure is fabricated upon the outer face of one member of a junction diode structure. In some embodiments the gate portion of the sourceless field-effect transistor structure is at least partially transparent to radiation of at least part of the electro-magnetic spectrum. In some embodiments radiation sensitive material is deposited upon the gate portion of the sourceless field-effect transistor structure.