Abstract:
In accordance with methods and systems of the present disclosure, a mobile device may include an enclosure adapted such that the enclosure is readily transported by a user of the mobile device, a speaker associated with the enclosure for generating sound, and a controller within the enclosure, communicatively coupled to the speaker. The controller may be configured to receive a signal from the speaker, the signal induced at least in part by sound incident on the speaker other than sound generated by the speaker and process the signal.
Abstract:
In accordance with systems and methods of the present disclosure, an input network for a delta-sigma modulator having at least one integrator stage and a feedback digital-to-analog stage, may be configured to, during a first period of a first phase of a clock signal, drive an analog feedback signal proportional to a digital feedback signal of the feedback digital-to-analog stage onto an input plate of a sampling capacitor integral to the input network. The input network may further be configured to, during a second period of the first phase of the clock signal, sample an analog input signal onto the input plates of the sampling capacitor.
Abstract:
A power stage for light emitting diode (LED)-based light bulbs may include a bipolar junction transistor (BJT). The base of BJT switch may be biased externally and the operation of the BJT may be through a single pin to the emitter of the BJT. A controller integrated circuit (IC) may control the power stage through the main BJT's emitter pin in an emitter-controlled BJT-based power stage. The emitter-controlled BJT-based power stage may replace the conventional buck-boost power stage topology. For example, the controller may activate and deactivate a switch coupling the BJT's emitter to ground. A power supply for the controller IC may be charged from a reverse recovery of charge from the BJT, and the reverse recovery controlled by the controller IC.
Abstract:
An electronic transformer stabilization circuit includes a detection circuit and a reactive load. The detection circuit may be configured to receive a transformer output or a transformer signal derived from the transformer output. The detection circuit may determine whether the transformer that generated the transformer output is an electronic transformer. The determination may be made based on the presence of absence of high frequency components in the transformer output. Responsive to determining that an electronic transformer generated the transformer output, the stabilization circuit may operate a switch to connect the reactive load across an output of the transformer. The reactive load may include an inductor and may be configured to draw a stabilization current from the transformer. The stabilization current may ensure that the total current drawn from the transformer exceeds an oscillation current required to maintain reliable operation of the electronic transformer.
Abstract:
A processing circuit may comprise an adaptive filter having a response generating an anti-noise signal from a reference microphone signal, a secondary path estimate filter modeling an electro-acoustic path of a source audio signal, a biasing portion that generates a scaled anti-noise signal by applying a scaling factor and the response of the secondary path estimate filter to the anti-noise signal, and a coefficient control block that shapes the response of the adaptive filter in conformity with the reference microphone signal and a modified playback corrected error signal by adapting the response of the adaptive filter to minimize ambient audio sounds in the error microphone signal, wherein the playback corrected error is based on a difference between the error microphone signal and the source audio signal and the modified playback corrected error signal is based on a difference between the playback corrected error signal and the scaled anti-noise signal.
Abstract:
In accordance with methods and systems of the present disclosure, a processing circuit may implement at least one of: a feedback filter having a response that generates at least a portion of an anti-noise component from a playback corrected error, the playback corrected error based on a difference between the error microphone signal and a secondary path estimate; and a feedforward filter having a response that generates at least a portion of the anti-noise signal from a reference microphone signal. The processing circuit may also implement a secondary path estimate filter configured to model an electro-acoustic path of a source audio signal and have a response that generates a secondary path estimate from the source audio signal and a secondary path estimate performance monitor for monitoring performance of the secondary path estimate filter in modeling the electro-acoustic path.
Abstract:
In accordance with the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include an output and a processing circuit. The output may provide an output signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer. The processing circuit may implement an adaptive noise cancellation system that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal.
Abstract:
An apparatus may include an acoustic transducer, a housing, a microphone, and an acoustical conduit. The acoustic transducer may include a diaphragm having a front and a back, the diaphragm configured to mechanically vibrate in response to an audio signal, thereby producing sound from the front of the diaphragm. The housing may be configured to mechanically support the acoustic transducer such that the front faces an exterior of the housing and the back faces an interior of the housing. The microphone may be disposed in the interior of the housing and may be configured to sense combined sound produced by the acoustic transducer and ambient sound proximate to the acoustic transducer. The acoustical conduit may be coupled to and extend from the microphone and pass adjacent the acoustic transducer such that the microphone senses sound proximate to the front of the diaphragm.
Abstract:
A second error microphone may be incorporated in a mobile device to allow computation of additional parameters for modifying an adaptive noise cancellation (ANC) algorithm. For example, a first and second acoustic pressure may be calculated from a first and second error microphone of the mobile device. The first and second acoustic pressure may be input to an algorithm for determining an acoustic intensity vector. The ANC algorithm may receive the acoustic intensity vector as an input, and adapt an anti-noise signal to reduce the acoustic intensity vector. Additionally, an input impedance for the error microphones may be calculated from the acoustic pressure to determine coupling between a speaker and a user's ear. The anti-noise algorithm may be adjusted or disabled when the input impedance indicates the user has removed the phone from the user's ear.
Abstract:
A wireless earpiece may include a local memory for storing audio files that can be played back by the user. The wireless earpiece may fit entirely within the user's ear canal. Audio files, for example music files, may be loaded on the wireless earpiece by docking the wireless earpiece with a mobile device, which includes a larger memory storing the user's library of music files. The wireless earpiece may also be charged while docked with the mobile device by receiving power from the mobile device's larger battery. To provide stereo sound, two wireless earpieces may be worn by the user and docked separately with the mobile device. Each of the two wireless earpieces may store a single channel of an audio file, which is separated by the mobile device during synchronization.