Abstract:
An apparatus for providing multiple screens and a method of dynamically configuring multiple screens are provided. The apparatus for providing multiple screens includes a service processing module which generates logical screens displaying services and a display screen and swaps the services between the logical screens, and an output module which maps the logical screens to arbitrary locations on the display screen.
Abstract:
The present invention relates to a solid oxide fuel cell having a gradient structure in which pore size becomes gradually smaller from a porous electrode to an electrolyte thin film in order to form a dense electrolyte thin film of less than about 2 microns and preferably less than 1 micron on the porous electrode.
Abstract:
A PIP capacitor and methods thereof. A method of fabricating a PIP capacitor may include forming a field oxide film over a silicon substrate to define a device isolating region and/or an active region. A method of fabricating a PIP capacitor may include forming a lower polysilicon electrode having doped impurities on and/or over an field oxide film. A method of fabricating a PIP capacitor may include performing an oxidizing step to form a first oxide film over a polysilicon and/or a second oxide film on and/or over an active region. A method of fabricating a PIP capacitor may include forming an upper polysilicon electrode on and/or over a region of a first oxide film and forming a gate electrode on and/or over a second oxide film at substantially the same time. A method of fabricating a PIP capacitor may include forming a polysilicon resistor. A PIP capacitor is disclosed.
Abstract:
A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
Abstract:
Provided a flash memory cell stack, a flash memory cell stack string, a cell stack array, and a method of fabricating thereof. A flash memory cell stack includes a semiconductor substrate; a control electrode provided in a vertical pillar shape on a surface of the semiconductor substrate; an insulating film provided between the control electrode and the semiconductor substrate; a gate stack provided on a side surface of the control electrode; a plurality of first insulating films provided as layers on a side surface of the gate stack; a plurality of second doping semiconductor areas provided as layers on a side surface of the gate stack; and a first doping semiconductor area provided on side surfaces of the first insulating films and the second doping semiconductor areas, wherein the first insulating films and the second doping semiconductor areas are alternately provided as layers on the side surface of the gate stack.
Abstract:
A semiconductor includes a channel region in a semiconductor substrate, a gate dielectric film on the channel region, and a gate on the gate dielectric film. The gate includes a doped metal nitride film, formed from a nitride of a first metal and doped with a second metal which is different from the first metal, and a conductive polysilicon layer formed on the doped metal nitride film. The gate may further include a metal containing capping layer interposed between the doped metal nitride film and the conductive polysilicon layer.
Abstract:
A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
Abstract:
A device includes a base substrate, a package including an encapsulated die, the package at least partially embedded in the base substrate, and a wiring portion on the package and extending across at least a portion of the base substrate adjacent to the package.
Abstract:
The present invention relates to a flash memory device and its fabrication method. The device comprises a structure for improving a scaling-down characteristic/performance and increasing memory capacity of the MOS-based flash memory device. A new device structure according to the present invention is based on a recessed channel capable of implementing highly-integrated/high-performance and 2-bit/cell. The proposed device suppresses the short channel effect, reduces the cell area, and enables 2-bit/cell by forming the charge storage node as a spacer inside the recessed channel. Moreover, if selectively removing the dielectric films around the recessed silicon surface, the sides as well as the surface of the recessed channel is exposed. A spacer can be used as a storage node, thereby improving the channel controllability of the control electrode and the on-off characteristic of a device. The proposed structure also resolves the threshold voltage problem and improves the write/erase speeds.
Abstract:
The present invention provides a hybrid composite sealant, as a sealing material for a planar type solid oxide fuel cell stack, having a matrix of a glass composition, wherein a surface layer reinforced with platelet reinforcement particles is laminated on either one or both surfaces of an inner layer reinforced with fibrous reinforcement particles. Accordingly, by applying the composite sealant of the present invention to the solid oxide fuel cell stack, excellent gas-tightness of the stack can be obtained even under low coupling pressure, thermal cycling durability can be enhanced due to low coupling strength with a contact surface of an object to be sealed, stack disassembly and maintenance can be facilitated when parts within the stack are disabled, and stack stability as well as stack performance can be maintained under a pressurized operation condition where pressure differentials between the inside and outside of the stack reach to 5 atmospheric pressures (0.5 MPa).