Abstract:
A Schottky diode is formed on a silicon support. A non-doped GaN layer overlies the silicon support. An AlGaN layer overlies the non-doped GaN layer. A first metallization forming an ohmic contact and a second metallization forming a Schottky contact are provided in and on the AlGaN layer. First vias extend from the first metallization towards the silicon support. Second vias extend from the second metallization towards an upper surface.
Abstract:
An electrical connector includes a frame delimiting an elongated open cavity, and having two parallel long sides provided with contact areas capable of cooperating with contact areas of a complementary electrical connector. Each long side is formed of a multilayer printed circuit board.
Abstract:
An AC/DC converter includes a first terminal and a second terminal for receiving an AC voltage and a third terminal and a fourth terminal for delivering a DC voltage. A capacitive circuit is connected between the third and fourth terminals. A rectifying bridge circuit has input terminals respectively coupled to the first and second terminals and has output terminal respectively connected to the third and fourth terminals. An inductive element is coupled in series with a first switch circuit between the first terminal and an input terminal of the rectifying bridge circuit.
Abstract:
A surface-mount chip is formed by a silicon substrate having a front surface and a side. The chip includes a metallization intended to be soldered to an external device. The metallization has a first portion covering at least a portion of the front surface of the substrate and a second portion covering at least a portion of the side of the substrate. A porous silicon region is included in the substrate to separating the second portion of the metallization from the rest of the substrate.
Abstract:
A circuit for balancing a voltage across a semiconductor element series-connected with other semiconductor elements of the same type may include a comparator configured to compare data representative of a voltage across the semiconductor element with a reference voltage, and a resistive element of adjustable value and configured to be controlled by the comparator.
Abstract:
A Schottky diode is formed on a silicon support. A non-doped GaN layer overlies the silicon support. An AlGaN layer overlies the non-doped GaN layer. A first metallization forming an ohmic contact and a second metallization forming a Schottky contact are provided in and on the AlGaN layer. First vias extend from the first metallization towards the silicon support. Second vias extend from the second metallization towards an upper surface.
Abstract:
A capacitor has a variable capacitance settable by a bias voltage. A method for setting the bias voltage including the steps of: (a) injecting a constant current to bias the capacitor; (b) measuring the capacitor voltage at the end of a time interval; (c) calculating the capacitance value obtained at the end of the time interval; (d) comparing this value with a desired value; and (e) repeating steps (a) to (d) so as long as the calculated value is different from the set point value. When calculated value matches the set point value; the measured capacitor voltage is stored as a bias voltage to be applied to the capacitor for setting the variable capacitance.
Abstract:
A method for managing the lifetime of a battery is disclosed herein. An ambient temperature is measured near a battery. A discharge of the battery is triggered when the ambient temperature exceeds a first temperature threshold. The battery can then be charged when the ambient temperature decreases below a second temperature threshold.
Abstract:
An AC/DC converter receives an AC voltage at a first terminal and a second terminal. A rectifying bridge has a first input terminal coupled via a resistive element to the first terminal and a second input terminal connected to the second terminal, with output terminals of the rectifying bridge coupled to third and fourth terminals of the converter for generating a DC voltage. A first controllable rectifying thyristor couples the first terminal to the third terminal and a second controllable rectifying thyristor couples the fourth terminal to the first terminal. The resistive element functions as an inrush protection device during a first phase when the thyristors are turned off. In a second phase, the thyristors are selectively actuated.
Abstract:
An electronic device includes a flexible conductive member having a first length, and a battery substrate having a second length shorter or equal than the first length. There is an active battery on the battery substrate. An adhesive layer couples the active battery and the battery substrate to the flexible conductive member such that the active battery and the flexible conductive member are electrically coupled, and such that the flexible substrate encapsulates the active battery and the upper portion of the battery substrate without an intervening layer. The flexible conductive member includes an insulating flexible base layer having a conductive via formed therein. Upper and lower metallized layers are formed on the insulating flexible base layer and are electrically coupled to one another by the conductive via.