Abstract:
Systems and methods configured to form and point beams from one or more unmanned aerial vehicles (UAVs) toward a target coverage area on the ground. One embodiment describes dividing the target coverage area on the ground among multiple UAVs when each UAV antenna system generates static beams. Another embodiment describes dividing the target coverage area on the ground among multiple UAVs when their antenna systems are capable of dynamically steering their respective beams. Another set of embodiments describe systems and method to allow multiple UAVs to provide service in the same area on the ground using the same spectrum.
Abstract:
A remote worksite monitoring system is provided. The remote worksite monitoring system includes a machine operating at a worksite, The remote worksite monitoring system also includes an Unmanned Aerial Vehicle (UAV) associated with the machine. The UAV includes a control module and a sensor module. The UAV is adapted to fly to a location proximate to an area at which the machine is present. The UAV is adapted to directly communicate with the machine over a first communication network to at least one of receive machine data from the machine and transfer data to the machine when direct communication between the machine and a remote control station cannot be established. Further, the UAV is adapted to transmit the machine data received from the machine to the remote control station over a second communication network.
Abstract:
An embodiment of an unmanned aerial vehicle, which may be connected to a lighter-than-air carrier, may have a ratio of a lifting force of the carrier to a weight of the vehicle from 1.1:1 to 3:1. The vehicle, excluding payload, may have a mass of from 30 kg to 150 kg. The vehicle may have a wingspan of from 20 m to 60 m.
Abstract:
Systems and methods are described for an automatically deployed wireless network. According to one embodiment, an access point controller (AC) determines the existence of a network anomaly at a position of a wireless network that is managed by the AC. Responsive thereto, the AC causes an unmanned vehicle that carries a movable access point (AP) to carry the movable AP to the position or proximate thereto and causes the movable AP to provide wireless network service to an area encompassing the position by sending a dispatch command to the unmanned vehicle. The dispatch command instructs the unmanned vehicle to move to the position or proximate thereto.
Abstract:
Techniques and systems for providing miniaturized unmanned aerial vehicles (UAVs) are disclosed. The techniques and systems can include significant off-board processing support for the UAVs to enable the UAVs to be smaller, lighter, and less expensive than conventional UAVs. The techniques and systems can include routines to provide enhanced support for police during routine traffic stops. The techniques and systems can also include routines to locate objects or people including, for example, locating a lost child in a crowd or a lost vehicle in a parking lot. The miniaturized UAVs can provide enhances perception for the user to enable the user to over and around objects for improved visibility and safety, among other things.
Abstract:
A solar powered aircraft having segmented wings that can be reconfigured during flight to optimize collection of solar energy are described. The aircraft have rigid construction that is resistant to inclement weather and is configured to rely on free flight control at high altitude and under conventional conditions, thereby providing flight duration in excess of 2 months. The aircraft is particularly suitable for use as part of a telecommunications network. A telecommunications network incorporating such aircraft is also discussed.
Abstract:
An auxiliary device is provided for a high-altitude airplane. The auxiliary device includes a drive, which is independent of the airplane, for the ascent of the airplane into the stratosphere. The airplane is releasably coupled to the auxiliary device. The auxiliary drive is releasable from the airplane altitude on the latest on reaching a predetermined mission.
Abstract:
A device receives a request for a flight path from a first location to a second location in a region, and calculates the flight path based on the request and based on one or more of weather information, air traffic information, obstacle information, regulatory information, or historical information associated with the region. The device determines required capabilities for the flight path based on the request, and selects, from multiple UAVs, a particular UAV based on the required capabilities for the flight path and based on a ranking of the multiple UAVs. The device generates flight path instructions for the flight path, and provides the flight path instructions to the particular UAV to permit the particular UAV to travel from the first location to the second location via the flight path.
Abstract:
Systems and methods are provided that couple one or more devices to one or more presentation screens and to one or more servers via network connections. Various devices can be identified on a network and location data regarding each of the mobile devices can be delivered to the servers. Data can be displayed on a presentation screen based on mobile devices in its proximity, for example.
Abstract:
A device receives a request for a flight path from a first location to a second location in a region, and calculates the flight path based on the request and based on one or more of weather information, air traffic information, obstacle information, regulatory information, or historical information associated with the region. The device determines required capabilities for the flight path based on the request, and selects, from multiple UAVs, a particular UAV based on the required capabilities for the flight path and based on a ranking of the multiple UAVs. The device generates flight path instructions for the flight path, and provides the flight path instructions to the particular UAV to permit the particular UAV to travel from the first location to the second location via the flight path.