Abstract:
A bi-stable micro-actuator is formed from a first and a second silicon-on-insulator wafer fused together at an electrical contact layer. A cover has a V-groove that defines an optical axis. A collimated optical signal source in the V-groove couples an optical signal to an optical port in the V-groove. A mirror surface on the transfer member blocks or reflects the optical signal. The transfer member has a point of support at the first and second end. The central portion of the transfer member carrying a mirror is displaced from the compressive axis with transfer member in a bowed first or second state. The mirror blocks or reflects the optical axis. An expandable structure applies a compressive force between the first and second point of support along the compressive axis to hold the transfer member in a bowed first state or a bowed second state. A control signal is applied to a heating element in the expandable structure to reduce the compressive force transferring the transfer member to a second state. The central portion of the transfer member moves from a bowed first state past the compressive axis into a bowed second state to clear the optical axis.
Abstract:
A comb-finger microstructure is disclosed for use in optical switching arrays, beam steering, optical displays, disk drive head actuators and the like. The microstructure is capable of producing linear or nonlinear actuation forces, perpendicular to the surface of a chip in which the microactuator is formed, as a function of applied voltages. The microstructure further provides the ability to detect the position of a movable structure with respect to a stationary or anchored structure.
Abstract:
A micrometer sized, single-stage, vertical thermal actuator with controlled bending capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above the hot arm relative to the surface. The cold arm is adapted to provide controlled bending near the first end thereof. A member mechanically and electrically couples the free ends of the hot and cold arms such that the actuator bends generally at the flexure so that the member moves away from the substrate when current is applied to at least the hot arm.
Abstract:
A method is provided for making a micromirror unit which includes a frame, a mirror forming base, and bridges connecting the frame to the mirror forming base. The method includes the following steps. First, a first mask pattern is formed on a substrate for masking portions of the substrate which are processed into the frame and the mirror forming base. Then, a second mask pattern is formed on the substrate for masking portions of the substrate which are processed into the bridges. Then, the substrate is subjected to a first etching process with the first and the second mask patterns present as masking means. Then, the second mask pattern is removed selectively. Then, the substrate is subjected to a second etching process with the first mask pattern present as masking means. Finally, the first mask pattern is removed.
Abstract:
A beam steering module and switching system. The steering module is composed of a NnullM array of single axis mirrors able to rotate about a particular axis (X-axis), a second NnullM array of single axis mirrors able to rotate about an axis orthogonal to that of the first NnullM array of mirrors (Y-axis), and a relay lens designed to image the first mirror array onto the second mirror array such that the beam angle may be controlled in both the X and Y-axis by adjusting the angle of the appropriate mirrors in the X and Y mirror arrays. Two steering modules may be combined to form a switching system. With two such steering modules, it is possible to completely determine, at the plane of the output fiber array, the position and angle of an optical beam emerging from any of the input fibers.
Abstract:
The etching of a sacrificial silicon portion in a microstructure such as a microelectromechanical structure by the use of etchant gases that are noble gas fluorides or halogen fluorides is performed with greater selectivity toward the silicon portion relative to other portions of the microstructure by slowing the etch rate. The etch rate is preferably 30 um/hr or less, and can be 3 um/hr or even less. The selectivity is also improved by the addition of non-etchant gaseous additives to the etchant gas. Preferably the non-etchant gaseous additives that have a molar-averaged formula weight that is below that of molecular nitrogen offer significant advantages over gaseous additives of higher formula weights by causing completion of the etch in a shorter period of time while still achieving the same improvement in selectivity. The etch process is also enhanced by the ability to accurately determine the end point of the removal step. A vapor phase etchant is used to remove a material that has been deposited on a substrate, with or without other deposited structure thereon. By creating an impedance at the exit of an etching chamber (or downstream thereof), as the vapor phase etchant passes from the etching chamber, a gaseous product of the etching reaction is monitored, and the end point of the removal process can be determined. The vapor phase etching process can be flow through, a combination of flow through and pulse, or recirculated back to the etching chamber. Also, the etch selectivity can be improved by doping the sacrificial material.
Abstract:
An across-wafer optical MEMS device includes a protective lid having across-wafer light-transmissive portions. The across-wafer optical MEMS device allows light to pass in a direction substantially parallel to a surface on which the optical MEMS device is mounted. The light-transmissive portions in the protective lid allow light to pass from an optical device located on one side of the optical MEMS device to a second device located on another side of the optical MEMS device. A plurality of optical MEMS devices can be located on the substrate and enclosed by the same lid without wafer-level encapsulation of each optical MEMS device.
Abstract:
A micro-mechanical actuator is disclosed for actuating an object in a micro-electro-mechanical system. One end of the object is flexibly connected a substrate, and another end is flexibly connected to an auxiliary lever which is further connected to an actuating force generator. The auxiliary lever receives an actuating force generated from the actuating force generator to perform a levering operation about a fulcrum. The position of the fulcrum allows an portion of the auxiliary lever connected to the object has a shift larger than a shift of another portion of the auxiliary lever connected to the actuating force generator in response to the actuating force.
Abstract:
An array of magnetically actuated MEMS mirror devices is provided having stationary magnets configured to provide strong magnetic fields in the plane of the mirrors without any magnets or magnet-system components in the plane of the mirrors. Also, a magnetically actuated mirror device is provided that includes an improved actuation coil configuration that provides greater torque during mirror actuation. In addition, a mechanism is provided to detect the angular deflection of a moveable mirror. Also, an improved process is provided for manufacturing MEMS mirror devices.
Abstract:
A simple method for making large, uniformly flat electrostatically actuated micro-mirrors for use as variable attenuators and switches in optical networking systems is disclosed. The devices are fabricated by fusion bonding ultra-thin, single crystal silicon wafers to micromachined silicon substrates, forming robust, non-deforming reflective surfaces which are simpler to fabricate than similar devices fabricated by conventional chemical vapor deposition of polycrystalline silicon, which require careful engineering to avoid stress-induced deformation.