Abstract:
Containers suitable for storing pressurized fluids at cryogenic temperatures of −62° C. (−80° F.) and colder are provided and comprise a self-supporting liner and load-bearing composite overwrap, whereby means are provided for substantially preventing failure of the container during temperature changes.
Abstract:
A cryogenic fluid storage/processing system which includes a cement box in which is positioned a multiplicity of tanks arranged parallel in one or more layers and surrounded by perlite insulation, and in which is positioned a pump for filling/emptying the tanks. A vaporizer the vaporizing the tank contents is mounted on or adjacent to the box.
Abstract:
A cryogenic vessel includes a first, outer vessel assembly having an outer vessel and a liquid fill line assembly and a second, ullage space vessel having a bottom and disposed within the first, outer vessel, adjacent to the top of the first, outer vessel. The liquid fill line assembly has a venturi assembly adjacent the bottom of the ullage space vessel. The venturi assembly is structured to create a low pressure zone, relative to the ullage space vessel, during a fill procedure whereby, during a fill procedure, fluid is drawn from within the ullage space vessel into the fill line assembly.
Abstract:
The invention relates to an energy system using as fuel natural gas stored in liquid form in at least one tank containing liquefied natural gas, the system comprising a feeder device provided with a heater device for heating liquefied natural gas and/or natural gas vapor, and making use of a thermoelectric power unit including rotary electrical machines, the system further comprises a first heat exchanger system associated with a cooler device for cooling the rotary electrical machines, and a second heat exchanger system associated with the heater device, the first heat exchanger system being coupled to the second heat exchanger in order to enable heat to be transferred from the cooler device to the heater device.
Abstract:
An economical system provides gaseous hydrocarbon to numerous locations (16, 18) that are each in the vicinity of an ocean coast, such as islands in a developing country, so the coastal inhabitants have access to low cost, easily supplied by pipeline and clean-burning natural gas. The system includes a local supply station (24), or hub, that stores natural gas, as by receiving LNG (liquefied natural gas) that has been liquefied by cooling it to −160° C., from a large tanker (20) having a storage capacity of over 50 million standard cubic feet of natural gas. Shuttle boats (40) that each has a much smaller LNG storage capacity than the tanker, load LNG from the local supply station, carry it to one of a plurality of local coastal stations (12, 14), heat the LNG to produce gaseous hydrocarbons, and transfer the gaseous hydrocarbons to an offshore receiving facility of the local coastal station. The gaseous hydrocarbons are then used by the local coastal station as to distribute gaseous hydrocarbons to residents of the island or to fuel an electricity generating plant.
Abstract:
A manway cover assembly for a railroad tank car. The manway cover assembly is moveable between a closed position in covering relationship with a manway nozzle and an open position that permits access into the tank car. The manway cover assembly includes a manway cover having a generally inwardly convex central portion and a generally flat outer annular portion having an inwardly facing recess formed therein for receipt of an upper edge of the manway nozzle. A generally flat round weather shield member is attached to the outer ring member in covering relationships with the central inwardly convex portion of the manway cover member.
Abstract:
Substantially rectangular-shaped tanks are provided for storing liquefied gas, which tanks are especially adapted for use on land or in combination with bottom-supported offshore structure such as gravity-based structures (GBS). A tank according to this invention is capable of storing fluids at substantially atmospheric pressure and has a plate cover adapted to contain fluids and to transfer local loads caused by contact of said plate cover with said contained fluids to a grillage of stiffeners and stringers, which in turn is adapted to transfer the local loads to an internal truss frame structure. Methods of constructing these tanks are also provided.
Abstract:
Methods of passivating a metal surface are described, the methods comprising the steps of exposing the metal surface to a silicon-containing passivation material, evacuating the metal surface, exposing the treated surface to a gas composition, having a concentration of reactive gas that is greater than an intended reactive gas concentration of gas to be transported by the metal surface, evacuating the metal surface to remove substantially all of the gas composition to enable maintenance of an increased shelf-life, low concentration reactive gas at an intended concentration, and exposing the metal surface to the reactive gas at the intended reactive gas concentration. Manufactured products, high stability fluids, and methods of making same are also described.
Abstract:
An apparatus for draining reservoirs includes a pump disposed in contact with a lower surface of the vessel to be drained, wherein the pump is connected to a discharge pipe inserted into the vessel through an insertion tube connected to a retrofit assembly of the vessel. The apparatus also includes seals within the insertion tube and within the discharge pipe to prevent gases from within the vessel from passing through the insertion tube and discharge pipe and into the atmosphere. An expansion joint unit attaches to the discharge pipe to prevent the rotation of the pump relative to the discharge pipe. The expansion joint unit also maintains the pump in substantial contact with the lower surface of the vessel even when thermal expansion causes the vessel to expand and the position of the discharge pipe to lift.
Abstract:
An offshore liquefied natural gas structure may receive, store, and process liquefied natural gas from carriers. A structure may be a gravity base structure. A structure may include a system of ballast storage areas, transfer equipment to offload liquefied natural gas from a carrier, docking equipment to allow direct mooring with carriers, platforms to elevate equipment, water intake systems to provide water to the structure, wave deflectors, and/or projections extending from a bottom of the structure. A portion of the structure may be composed of lightweight concrete. Pipelines may be coupled to the structure to export processed natural gas onshore. Living quarters, flare towers, and export line metering equipment may be included on the structure.