Abstract:
A substrate processing system has a housing that defines a process chamber. A substrate holder is disposed within the process chamber and configured to support a substrate within a substrate plane during substrate processing. A gas-delivery system is configured to introduce a gas into the process chamber. A pressure-control system maintains a selected pressure within the process chamber. A high-density-plasma generating system is operatively coupled with the process chamber. A magnetic confinement ring with magnetic dipoles is disposed circumferentially around a symmetry axis orthogonal to the substrate plane and provides a magnetic field with a net dipole moment substantially nonparallel with the substrate plane. A controller controls the gas-delivery system, the pressure-control system, and the high-density plasma system.
Abstract:
A probe for measuring plasma properties in a processing chamber, comprises a conductive rod having a front portion and a rear portion. The front portion of the conductive rod comprises a probe surface adapted to be coplanar with an interior wall of the chamber. The probe also includes an insulating sheath circumscribing the conductive rod.
Abstract:
A continuous in situ process of deposition, etching, and deposition is provided for forming a film on a substrate using a plasma process. The etch-back may be performed without separate plasma activation of the etchant gas. The sequence of deposition, etching, and deposition permits features with high aspect ratios to be filled, while the continuity of the process results in improved uniformity.
Abstract:
A substrate support utilized in high-density plasma chemical vapor deposition (HDP-CVD) processing functions as a radio frequency (RF) electrode (e.g., a bias RF cathode). An upper surface of the substrate support has a central upper surface portion and a peripheral upper surface portion, with the peripheral upper surface portion recessed relative to the central upper surface portion. The upper surface of the support extends beyond an outer edge of the substrate when the substrate is positioned on the substrate support. This extension in the support upper surface may enhance process performance by reducing electric field edge effects, as well as by improving directional distribution of ions traveling to the substrate. Since the peripheral upper surface portion is recessed relative to the central upper surface portion, a detachable shield can be disposed on the peripheral upper surface portion for preventing undesirable deposition on, or chemical attack of, the peripheral upper surface is portion, without interfering with positioning of the substrate.
Abstract:
A method and apparatus for forming a layer on a substrate in a process chamber during a plasma deposition process are provided. A plasma is formed in a process chamber, a process gas with precursor gases suitable for depositing the layer are flowed into the process chamber, and a magnetic field having a strength less than about 0.5 gauss is attenuated within the process chamber. Attenuation of such a magnetic field results in an improvement in the degree of process uniformity achieved during the deposition.
Abstract:
A substrate processing system has a housing that defines a process chamber, a gas-delivery system, a high-density plasma generating system, a substrate holder, and a controller. The housing includes a sidewall and a dome positioned above the sidewall. The dome has physically separated and noncontiguous pieces. The gas-delivery system introduces e a gas into the process chamber through side nozzles positioned between two of the physically separated and noncontiguous pieces of the dome. The high-density plasma generating system is operatively coupled with the process chamber. The substrate holder is disposed within the process chamber and supports a substrate during substrate processing. The controller controls the gas-delivery system and the high-density plasma generating system.
Abstract:
A coil is provided for use in a semiconductor processing system to generate a plasma with a magnetic field in a chamber. The coil comprises a first coil segment, a second coil segment and an internal balance capacitor. The first coils segment has a first end and a second end. The first end of the coil segment is adapted to connect to a power source. The second coil segment has a first and second end. The second end of the first coil segment is adapted to connect to an external balance capacitor. The internal balance capacitor is connected in series between the second end of the first coil segment and the first end of the second coil segment. The internal balance capacitor and the coil segments are adapted to provide a voltage peak along the first coil segment substantially aligned with a virtual ground along the second coil segment.
Abstract:
A substrate processing system has a housing that defines a process chamber. A substrate holder disposed within the process chamber supports a substrate during substrate processing. A gas-delivery system introduces a gas into the process chamber. A pressure-control system maintains a selected pressure within the process chamber. A high-density plasma generating system forms a plasma having a density greater than 1011 ions/cm3 within the process chamber. A radio-frequency bias system generates an electrical bias on the substrate at a frequency less than 5 MHz. A controller controls the gas-delivery system, the pressure-control system, the high-density plasma generating system, and the radio-frequency bias system.
Abstract:
A substrate processing system is provided with a housing defining a process chamber. A substrate holder is disposed within the process chamber and configured to support a substrate during substrate processing. A gas delivery system is configured to introduce a gas into the process chamber. A pressure-control system is provided for maintaining a selected pressure within the process chamber. A high-density-plasma generating system is operatively coupled with the process chamber and includes a coil for inductively coupling energy into a plasma formed within the process chamber. It also includes magneto-dielectric material proximate the coil for concentrating a magnetic field generated by the coil. A controller is also provided for controlling the gas-delivery system, the pressure-control system, and the high-density-plasma generating system.
Abstract:
A transformer-coupled plasma source using toroidal cores forms a plasma with a high-density of ions along the center axis of the torus. In one embodiment, cores of a plasma generator are stacked in a vertical alignment to enhance the directionality of the plasma and generation efficiency. In another embodiment, cores are arranged in a lateral array into a plasma generating plate that can be scaled to accommodate substrates of various sizes, including very large substrates. The symmetry of the plasma attained allows simultaneous processing of two substrates, one on either side of the plasma generator.