Abstract:
An integrated circuit includes a capacitor. A switch is electrically coupled with the capacitor in a parallel fashion. A comparator includes a first input node, a second input node, and an output node. The second input node is electrically coupled with a first plate of the capacitor. The output node is electrically coupled with the switch. A transistor is electrically coupled with a second plate of the capacitor. A circuit is electrically coupled with a gate of the transistor. The circuit is configured to provide a bias voltage to the gate of the transistor so as to control a current that is supplied to charge the capacitor.
Abstract:
A voltage regulator includes an output stage electrically coupled with an output end of the voltage regulator. The output stage includes at least one transistor having a bulk and a drain. At least one back-bias circuit is electrically coupled with the bulk of the at least one transistor. The at least one back-bias circuit is configured to provide a bulk voltage, such that the bulk and the drain of the at least one transistor are reverse biased during a standby mode of a memory array that is electrically coupled with the voltage regulator.
Abstract:
An integrated circuit includes at least one first gate electrode of at least one active transistor. At least one first dummy gate electrode is disposed adjacent to a first side edge of the at least one first gate electrode. At least one second dummy gate electrode is disposed adjacent to a second side edge of the at least one first gate electrode. The second side edge is opposite to the first side edge. At least one guard ring is disposed around the at least one first gate electrode, the at least one first dummy gate electrode, and the at least one second dummy gate electrode. An ion implantation layer of the at least one guard ring substantially touches at least one of the at least one first dummy gate electrode and the at least one second dummy gate electrode.
Abstract:
A circuit includes an operational PMOS transistor of a logic gate driver. A control circuit is configured to turn off the operational PMOS transistor during a standby mode. The circuit also includes a sacrificial PMOS transistor coupled to an output node. The operational PMOS transistor is coupled to the output node. The sacrificial PMOS transistor is configured to keep the output node at a logical 1 during the standby mode.
Abstract:
An integrated circuit includes a differential amplifier. The differential amplifier includes at least one output end. A circuit is coupled with the at least one output end of the differential amplifier. The circuit does not include a resistor-capacitor (RC) network and is configured for providing a negative impedance to the differential amplifier for adjusting a direct current (DC) gain of the integrated circuit.
Abstract:
A method for forming narrow length transistors by forming a trench in a first layer over a semiconductor substrate. Spacers are then formed within the trench and a gate dielectric is formed between the spacers at the bottom of the trench on the semiconductor substrate. The trench is then filled with a gate electrode material which is chemically-mechanically polished back to isolate the gate electrode material within the trench, and the first layer is removed leaving the gate dielectric, gate electrode and spacers behind.
Abstract:
A circuit includes a summation circuit for receiving an input data signal and a feedback signal including a previous data bit. The summation circuit is configured to output a conditioned input data signal to a clock and data recovery circuit. A first flip-flop is coupled to an output of the summation circuit and is configured to receive a first set of bits of the conditioned input data signal and a first clock signal having a frequency that is less than a frequency at which the input data signal is received by the first summation circuit. A second flip-flop is coupled to the output of the summation circuit and is configured to receive a second set of bits of the conditioned input data signal and a second clock signal having a frequency that is less than the frequency at which the input data signal is received by the first summation circuit.
Abstract:
A Decision Feedback Equalizer (DFE) with programmable taps includes a summer configured to receive a DFE input signal. Delay elements are coupled to the summer. The delay elements are connected in series. Each delay element provides a respective delayed signal of an input signal to the delay element. A weight generator is configured to provide tap weights. The DFE is configured to multiply each tap weight to the respective delayed signal from the respective delay element to provide tap outputs. Each tap output is selectively enabled to be added to the summer or disabled based on a first comparison of a first threshold value and each impulse response or each tap weight corresponding to the respective tap output, where the impulse response is the DFE input signal in response to a pulse signal transmitted through a channel.
Abstract:
An inductor-capacitor phase locked loop (LCPLL) includes an inductor-capacitor voltage controlled oscillator (LCVCO) that provides an output frequency. A calibration circuit includes two comparators and provides a coarse tune signal to the LCVCO. The two comparators respectively compare the loop filter signal with a first reference voltage and a second reference voltage that is higher than the first reference voltage to supply a first and second comparator output, respectively. The calibration circuit is capable of adjusting the coarse tune signal continuously in voltage values and adjusts the coarse tune signal based on the two comparator outputs. A loop filter provides a loop filter signal to the calibration circuit and a fine tune signal to the LCVCO. A coarse tune frequency range is greater than a fine tune frequency range.
Abstract:
This description relates to a slicer including a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal and a developing transistor configured to receive a second clock signal. The first clock signal is different from the second clock signal. The first latch includes first and second input transistors configured to receive first and second complementary inputs. The first latch includes at least one pre-charging transistor configured to receive a third clock signal. The first latch further at least one cross-latched pair of transistors, the at least one cross-latched transistor pair connected between the evaluating transistor and the first and second output nodes. The slicer includes a second latch connected to the first and second output nodes and to a third output node. The slicer includes a buffer connected to the third output node and configured to generate a final output signal.