Abstract:
Methods for reducing the contamination of a gas distribution plate are provided. In one embodiment, a method for processing a substrate includes transferring the substrate into a chamber, performing a treating process on the substrate, and providing a purge gas into the chamber before or after the treating process to pump out a residue gas relative to the treating process from the chamber. The treating process includes distributing a reactant gas into the chamber through a gas distribution plate.
Abstract:
Embodiments of the present invention provide an apparatus for transferring substrates and confining a processing environment in a chamber. One embodiment of the present invention provides a hoop assembly for using a processing chamber. The hoop assembly includes a confinement ring defining a confinement region therein, and three or more lifting fingers attached to the hoop. The three or more lifting fingers are configured to support a substrate outside the inner volume of the confinement ring.
Abstract:
Apparatus for the delivery of a gas to a chamber and methods of use thereof are provided herein. In some embodiments, a gas distribution system for a process chamber may include a body having a first surface configured to couple the body to an interior surface of a process chamber, the body having a opening disposed through the body; a flange disposed proximate a first end of the opening opposite the first surface of the body, the flange extending inwardly into the opening and configured to support a window thereon; and a plurality of gas distribution channels disposed within the body and fluidly coupling a channel disposed within the body and around the opening to a plurality of holes disposed in the flange, wherein the plurality of holes are disposed radially about the flange.
Abstract:
An apparatus is provided for measuring a substrate temperature during an etching process, comprising: one or more windows formed in a substrate supporting surface; a first signal generator configured to pulse a first signal; and a first sensor positioned to receive energy transmitted from the first signal generator through the one or more windows. A method is provided for measuring a substrate temperature during an etching process comprising: heating a substrate using radiant energy; pulsing a first light; determining a metric indicative of total transmittance through the substrate when the first light is pulsed on; determining a metric indicative of background transmittance through the substrate when the first light is pulsed off; and determining a process temperature.
Abstract:
Embodiments of the present disclosure generally relate to vacuum processing chambers having different pumping requirements and connected to a shared pumping system through a single foreline. In one embodiment, the vacuum processing chambers include a high conductance pumping conduit and a low conductance pumping conduit coupled to a single high conductance foreline. In another embodiment, a plurality of unbalanced chamber groups may be connected to a common pumping system by a final foreline.
Abstract:
Methods for removing halogen-containing residues from a substrate are provided. By combining the heat-up and plasma abatement steps, the manufacturing throughput can be improved. Further, by appropriately controlling the pressure in the abatement chamber, the removal efficiency can be improved as well.
Abstract:
Process chambers having shared resources and methods of use are provided. In some embodiments, substrate processing systems may include a first process chamber having a first substrate support disposed within the first process chamber, wherein the first substrate support has a first heater and a first cooling plate to control a temperature of the first substrate support; a second process chamber having a second substrate support disposed within the second process chamber, wherein the second substrate support has a second heater and a second cooling plate to control a temperature of the second substrate support; and a shared heat transfer fluid source having an outlet to provide a heat transfer fluid to the first cooling plate and the second cooling plate and an inlet to receive the heat transfer fluid from the first cooling plate and the second cooling plate.
Abstract:
Systems and methods for calibrating pressure gauges in one or more process chambers coupled to a transfer chamber having a transfer volume is disclosed herein. The method includes providing a first pressure in the transfer volume and in a first inner volume of a first process chamber coupled to the transfer chamber, wherein the transfer volume and the first inner volume are fluidly coupled, injecting a calibration gas into the transfer volume to raise a pressure in the transfer volume and in the first inner volume to a second pressure, measuring the second pressure using each of a reference pressure gauge coupled to the transfer chamber and a first pressure gauge coupled to the first process chamber while the transfer volume and the first inner volume are fluidly coupled, and calibrating the first pressure gauge based on a difference in the measured second pressure between the reference pressure gauge and the first pressure gauge.
Abstract:
A method and apparatus for supplying a gas mixture to a load lock chamber is described. In one embodiment, the apparatus supplies a gas mixture to a pair of process chambers, comprising a first ozone generator to provide a first gas mixture to a first process chamber, a second ozone generator to provide a second gas mixture to a second process chamber, a first gas source coupled to the first ozone generator via a first mass flow controller and a first gas line, and coupled to the second ozone generator via a second mass flow controller and a second gas line, and a second gas source coupled to the first ozone generator via a third mass flow controller and a third gas line and coupled to the second ozone generator via fourth mass flow controller and a fourth gas line.
Abstract:
A method and apparatus for measuring gas flow are provided. In one embodiment, a calibration circuit for gas control may be utilized to verify and/or calibrate gas flows utilized for backside cooling, process gas delivery, purge gas delivery, cleaning agent delivery, carrier gases delivery and remediation gas delivery, among others.