摘要:
A dynamometer is coupled to a single cylinder version of a multi-cylinder engine. The dynamometer control system calculates the instantaneous dynamic torques (e.g., inertial, combustion, and/or other torques) that would normally be generated in the multi-cylinder engine. The control system then inputs the torque from the missing cylinders of the engine to the dynamometer, preferably by a hydraulic system capable of accurately applying these torque pulses. By inputting energy to the engine as well as receiving it, the single-cylinder engine can replicate the rapid transients that are experienced in multi-cylinder engine operation, and can therefore be made to have an instantaneous speed profile matching that of the multi-cylinder engine. This allows testing of the single-cylinder engine at all engine speeds (including very low speed operation, which has traditionally been problematic), and also allows transient speed and load testing on single-cylinder engines, where such testing has heretofore been infeasible. The dynamometer thereby expands use of simpler, more versatile, and less expensive single cylinder test engines in place of multi-cylinder test engines, thereby decreasing the time and cost of engine research efforts.
摘要:
A hybrid controller for controlling a hybrid vehicle is set forth. The hybrid vehicle has an engine, an electric motor and an engine controller determining a crankshaft torque. The hybrid controller includes an optimization module determining an electric motor torque, determining an engine torque and communicating the engine torque from the hybrid controller to the engine controller. The hybrid controller also includes a motor control module controlling the electric motor based on the electric motor torque.
摘要:
An internal combustion engine is controlled to achieve a preferred temperature of the exhaust aftertreatment system and to minimize a total engine energy loss. A transmission is controlled to achieve a torque output based upon the preferred engine operation.
摘要:
An engine and an electric machine are operative to communicate tractive power with a transmission device to control output power to an output member. The electric machine is electrically coupled to an energy storage device. A method for controlling the engine and electric machine includes monitoring an operator request for power, monitoring a state of charge of the energy storage device, determining an operating cost for each of a plurality of candidate engine operating points based on the operator request for power and the state of charge of the energy storage device; and operating the engine at the candidate engine operating point having a preferred operating cost.
摘要:
A method of controlling a hybrid powertrain of a vehicle includes lowering a target voltage set point of a low voltage battery to a temporary voltage set point to reduce the overall power required by the accessory power module when a requested voltage from a vehicle accessory draws the voltage of the low voltage battery below the target voltage set point. The temporary voltage set point gradually increases over time until equal to the target voltage set point, allowing sufficient time for a high voltage battery to provide the required power for the accessory power module or for an electric motor/generator to generate the current required by the accessory power module.
摘要:
A method for optimizing an engine idle speed in a vehicle having an engine, a motor generator unit (MGU), and an energy storage system (ESS) includes determining vehicle operating values, including at least one of: an electrical load of an accessory, a torque capacity of the MGU, a temperature of the MGU, an efficiency of the MGU, and a state of charge (SOC) of the ESS. The method also includes calculating a set of engine speed values using the set of vehicle operating values, and using a controller to command the engine idle speed as a function of the set of engine speed values. A vehicle includes an engine, an ESS, an MGU, and a controller having an algorithm adapted for optimizing an idle speed of the engine as set forth above.
摘要:
A control system for an engine includes an engine control module (ECM) that operates in a first mode and a second mode. The ECM generates an idle speed signal and a transmission load signal that is based on an idle speed of the engine. The hybrid control module (HCM) increases electric motor torque to increase a current speed of the engine based on the idle speed signal and the transmission load signal. The HCM controls the current speed when in the first mode. The ECM controls the current speed when in the second mode. The HCM transfers control of the current speed to the ECM when at least one of the current speed matches the idle speed and a combustion torque output of the engine is equal to a requested crankshaft output torque.
摘要:
A diagnostic cold start emissions control system for an internal combustion engine includes a control module having a calculated engine-out energy module, an engine-out energy residual module, and a diagnostic system evaluation module. The calculated engine-out energy module is in communication with the engine-out energy residual module and is configured to determine an operating engine-out energy flow based on an operating engine torque. The engine-out energy residual module is in communication with the diagnostic system evaluation module and is configured to determine an engine-out energy residual based on the determined engine-out energy flow and an expected engine-out energy flow. The diagnostic system evaluation module is configured to determine whether the determined engine-out energy residual meets a predetermined value indicative of proper cold start emissions control.
摘要:
An internal combustion engine is controlled to achieve a preferred temperature of the exhaust aftertreatment system and to minimize a total engine energy loss. A transmission is controlled to achieve a torque output based upon the preferred engine operation.
摘要:
An internal combustion engine is connected to a transmission to transmit tractive power to a driveline. Engine coolant temperature is determined, and power output of the engine is adjusted based upon the coolant temperature and preferred coolant temperature range. The transmission is controlled to transmit tractive power to the driveline to meet an operator torque request based upon the adjusted power output of the engine.