Abstract:
An imprinting apparatus and a method of the same which form a residual film including a uniform thickness all over a substrate. The imprinting apparatus includes a substrate support which supports a substrate which is coated with an imprint resin on an upper surface thereof, an imprint mold arranged on an upper side of the substrate support and which forms a predetermined pattern by molding the imprint resin coated on the substrate, a pressure roller which pressurizes the imprint mold to adhere closely to the substrate, a pressure roller control unit which controls the pressure roller to change a moving velocity and an applied pressure of the pressure roller according to a position of the imprint mold, and a resin curing unit which cures the imprint resin on the substrate.
Abstract:
The present invention relates to a display device including a substrate having a display area, a first electrode disposed on the substrate to receive a first voltage, a second electrode disposed on the substrate to receive a second voltage having an opposite polarity to that of the first voltage, an insulating layer disposed on the first electrode and the second electrode, and an isolated member disposed on the insulating layer and electrically isolated, wherein an induction charge is generated in the isolated member by application of the first voltage and the second voltage, and wherein light transmittance is controlled according to the application of the first and second voltages.
Abstract:
Disclosed are a printing mold and a manufacturing method thereof, and a method of forming a thin film pattern using the printing mold. The printing mold comprises a polymer-based main body with convex and concave surface portions, and an ink-phobic layer disposed on the concave surface portions of the main body.
Abstract:
A display apparatus includes a substrate; a first insulating layer formed on the substrate and having an upper surface including a concavo-convex area including one or more concave features and one or more convex features; a first storage electrode overlaying the upper surface and a side surface of the first insulating layer and having an upper surface including a concavo-convex area including one or more concave features and one or more convex features, each concave feature of the first storage electrode overlying at least one respective concave feature of the first insulating layer, each convex feature of the first storage electrode overlying at least one respective convex feature of the first insulating layer; a second insulating layer formed on the first storage electrode; and a second storage electrode formed on the second insulating layer which separates the second storage electrode from the underlying first storage electrode.
Abstract:
According to an embodiment, the method of manufacturing a thin film transistor array panel includes forming a gate wire, a data wire, and a thin film transistor on a substrate and depositing an organic material layer on the gate wire, the data wire, and the thin film transistor. The method further includes forming an optical pattern on the upper surface of the organic material layer, depositing a reflecting electrode layer on the organic material layer, etching the reflecting electrode layer, etching the organic material layer after etching the reflecting electrode layer, and forming a pixel electrode on the reflecting electrode layer. Accordingly, the optical pattern on the upper surface of organic material may be transcribed to the reflecting electrode layer without damage and with clarity.
Abstract:
A method and an apparatus which adjusts a signal read from an optical disc in order to obtain stable binary data. The signal adjustment method comprises (a) detecting a period of an input signal of a predetermined code; (b) determining whether the detected period is smaller than a predetermined value; and (c) if the detected period is determined to be smaller than the predetermined value, adjusting the input signal so that its period equals the predetermined value, and outputting the input signal. The signal adjustment method and apparatus of the present invention reduce errors and improve system performance, when a signal input to the binary processor does not meet its code feature.
Abstract:
A thin film transistor substrate includes a color filter layer and a gate line. The color filter layer has a reverse taper shape, which is used to pattern the gate line without a separate mask. Thus, the total number of masks used to manufacture the thin film transistor substrate can be reduced, thereby reducing the manufacturing cost and improving the productivity.
Abstract:
A thin film transistor substrate according to one or more embodiments of the present invention includes a gate line formed on a substrate, a data line that is insulated from and intersects the gate line, a thin film transistor connected to the gate line and the data line, a barrier rub formed on the thin film transistor and partitioning a plurality of first openings, a reflecting electrode formed in each of the first openings, and a pixel electrode formed on the reflecting electrode and that is electrically connected to the thin film transistor.
Abstract:
A thin film transistor array panel according to the present invention includes: a gate line formed on a substrate and including a gate electrode; a gate insulating layer formed on the gate electrode; a mold layer formed on the gate insulating layer and having an opening overlapping the gate electrode; a semiconductor layer filled in the opening; a data line formed on the mold layer and including a source electrode contacted with the semiconductor layer; a drain electrode contacted with the semiconductor layer on the mold layer and facing the source electrode; a passivation layer formed on the data line and the drain electrode; and a pixel electrode formed on the passivation layer and connected to the drain electrode, wherein the passivation layer, the source electrode, and the drain electrode have at least one through-hole connected to the opening.
Abstract:
A thin film transistor display substrate comprises a base substrate on which a pixel area including a first reflection area and a second reflection area is defined. A gate line formed on the base substrate and a data line formed on the base substrate. The data line is insulated from and intersected with the gate line to define the pixel area. A thin film transistor is formed in the pixel area and connected to the gate line and the data line. A first reflection layer is formed on the base substrate and corresponds to the first reflection area. A color filter is formed on the first reflection layer and corresponds to the pixel area. A second reflection layer is formed on the color filter and corresponds to the second reflection area. A pixel electrode is formed on the color filter and is electrically connected to the thin film transistor.