Abstract:
A time-division multiplex transmission network system having a plurality of data processing stations, in which data of a predetermined number of bits is transmitted on a data transmission line for a period of time determined by the number of bits of data by one bit in synchronization with a synchronization signal extracted from a predetermined time series code string signal when one of code patterns derived from the predetermined time series code string signal coincides with a predetermined code pattern indicating an address allocated to one of the individual data stations.
Abstract:
A network system having a plurality of data transmitters and receivers interconnected to a data transmission line and to a time series code string signal transmission line. In the network system, a first pulse train signal according to a predetermined time series code is produced and sent on the time series code string signal transmission line. In each data transmitter and receiver, the first pulse train signal is received and demodulated to form an intermediate synchronization signal and a plurality of predetermined code string patterns. When one of the plurality of predetermined code string patterns accords with a predetermined address code in one of time slots, either data transmitter or data receiver transmits or receives a data of a predetermined number of bits in a Non-Return To Zero code to or from the data transmission line in synchronization with a data transmission and reception enable clock signal predetermined by a data transmission and reception enable clock (oscillator) whose frequency variation is corrected by means of the intermediate synchronization signal one time or a plurality number of times by a predetermined number of bits of data so that a reliable data transmission without synchronization deviation between the data transmitter and data receiver(s) and without generation of high frequency noise can be achieved.
Abstract:
An information terminal includes: an operation assignment information storage unit that stores operation assignment information; an actuation information reception unit that receives from an in-car device actuation information; an assignment unit that, on the basis of the operation assignment information and the actuation information, assigns some among a plurality of operations in the information terminal to each of one or more actuations among a plurality of types of actuation that can be inputted with an actuation unit provided to the in-car device respectively, according to priority levels; an actuation signal reception unit that receives an actuation signal outputted from the in-car device; and a conversion unit that, on the basis of the result of assignment by the assignment unit, converts the actuation signal into an operating command that corresponds to one among the plurality of operations.
Abstract:
There is provided a power output system 1 comprising an internal combustion engine 6, an electric motor 2 and a transmission 20 including two transmission shafts 11, 16 which are connected to the internal combustion engine 6. The electric motor 2 includes a stator 3, a primary rotor 4 and a secondary rotor 5. The primary rotor 4 is connected to either of the two transmission shafts 11, 16. The secondary rotor 5 is connected to drive shafts 9, 9. And, the other transmission shaft of the two transmission shafts 11, 16 transmits power to the drive shafts 9, 9 without involving the electric motor 2.
Abstract:
A power plant that is capable of attaining downsizing and reduction of manufacturing costs and enhancing the degree of freedom in design thereof. In the power plant 1, a first rotating machine 11 includes a first rotor 14 having a predetermined plurality of magnetic poles 14a, a stator 13 that generates a predetermined plurality of armature magnetic poles to thereby generate a rotating magnetic field, and a second rotor 15 having a predetermined plurality of soft magnetic material elements 15a. The ratio between the number of the armature magnetic poles, the number of the magnetic poles, and the number of the soft magnetic material elements is set to 1:m:(1+m)/2 (m≠1.0). One of the rotors 14 and 15 is mechanically connected to an output portion 3a of a heat engine 3, and the other of the rotors 14 and 15 and a rotor 23 of a second rotating machine 21 are mechanically connected to driven parts DW and DW. Further, in starting the heat engine 3, when the rotational speed of the output portion 3a is not lower than a first predetermined value NEST1, the heat engine 3 is started in a state where the rotational speed of the output portion 3a is not increased.
Abstract:
An automatic transmission for a hybrid vehicle has a first clutch connecting a first drive gear shaft rotatably supporting drive gears G3a and G5a, to an input shaft, a second clutch connecting a second drive gear shaft, rotatably supporting drive gears G2a and G4a, to the input shaft, a first meshing mechanism connecting the drive gears G3a and G5a to the first drive gear shaft, a second meshing mechanism connecting the drive gears G2a and G4a to the second drive gear shaft, a brake fixing a third element of a planetary gear mechanism to a transmission case, and a switching mechanism switching to where an electric motor is connected to a first element or where the electric motor MG is connected to the third element. The first element and the first drive gear shaft are connected. A second element and the drive gear G3a are connected.
Abstract:
An information terminal includes: an operation assignment information storage unit that stores operation assignment information; an actuation information reception unit that receives from an in-car device actuation information; an assignment unit that, on the basis of the operation assignment information and the actuation information, assigns some among a plurality of operations in the information terminal to each of one or more actuations among a plurality of types of actuation that can be inputted with an actuation unit provided to the in-car device respectively, according to priority levels; an actuation signal reception unit that receives an actuation signal outputted from the in-car device; and a conversion unit that, on the basis of the result of assignment by the assignment unit, converts the actuation signal into an operating command that corresponds to one among the plurality of operations.
Abstract:
A moving apparatus that is capable of properly driving an accessory while preventing driven parts from being driven when the accessory is driven in a state where the driven parts are at rest. In the moving apparatus VE1, out of first to third elements S, C, and R configured such that they rotate during transmission of motive power therebetween while maintaining a collinear relationship in rotational speed, the first element S is mechanically connected to a first rotor 13 of a first rotating machine 11, one of the second and third elements C and R is mechanically connected to an output portion 3a of a prime mover 3 and an input portion 32 of an accessory 31, and the other of the second and third elements C and R is mechanically connected to driven parts DW and DW. Further, when the accessory 31 is driven in a state where the driven parts DW and DW are at rest during stoppage of the prime mover 3, the operation of restriction means 21 for restricting rotation of the first rotating machine 11 and the driven parts DW and DW is controlled such that motive power is input to the input portion 32, and that the rotational speed of the driven parts DW and DW is restricted to approximately 0.
Abstract:
Provided is a navigation technique which allows a person other than a user who received a route guide to operate a navigation device through an interaction process. The navigation device is characterized by being provided with an instruction reception unit, a process unit, and an output unit. The instruction reception unit receives an instruction for a process from an external device. The process unit executes a process in accordance with the instruction received by the instruction reception unit. The output unit outputs output information which is obtained as the result of the process executed by the process unit.
Abstract:
A hybrid vehicle is driven by a power unit which includes: a first rotating machine including a first rotor, a first stator, and a second rotor, wherein the number of magnetic poles generated by an armature row of the first stator and one of the first rotor and the second rotor are connected to a drive shaft; a power engine, wherein an output shaft of the power engine is connected to the other of the first rotor and the second rotor; a second rotating machine; and a capacitor. A traveling mode of the hybrid vehicle includes an EV traveling mode and an ENG traveling mode, wherein the hybrid vehicle travels with a motive power from at least one of the first rotating machine and the second rotating machine in the EV traveling mode, and the hybrid vehicle travels with a motive power from the power engine in ENG traveling mode. The hybrid vehicle includes: an EV traveling mode predicting unit that predicts a switching from the ENG traveling mode to the EV traveling mode; and a controller that controls a remaining capacity of the capacitor in accordance with prediction result obtained by the EV traveling mode predicting unit so as to change a target value of the remaining capacity. Accordingly, it is possible to achieve reduction in the size and cost of the power unit and enhance the driving efficiency of the power unit.