Abstract:
A green metal body includes metal particles and a binder in the shape of an orthodontic bracket and/or base plate. The green metal body is fabricated by being laser-cut with a laser to shape the green metal body into the shape of an orthodontic bracket and/or to carve recesses and/or undercuts into the bonding surface of the bracket. The green metal body is sintered to shrink its volume into a denser and less porous sintered metal body configured to be an orthodontic bracket. The resultant sintered orthodontic bracket includes recesses and/or undercuts in the bonding surface to provide a mechanical aspect when bonded to a tooth.
Abstract:
Shape data of a patient's crown and volumetric imagery of the patient's tooth are received. A determination is made of elements that represent one or more crowns in the shape data. A computational device is used to register the elements with corresponding voxels of the volumetric imagery. A tooth shape is determined from volumetric coordinates and radiodensities.
Abstract:
A green metal body includes metal particles and a binder in the shape of an orthodontic bracket and/or base plate. The green metal body is fabricated by being laser-cut with a laser to shape the green metal body into the shape of an orthodontic bracket and/or to carve recesses and/or undercuts into the bonding surface of the bracket. The green metal body is sintered to shrink its volume into a denser and less porous sintered metal body configured to be an orthodontic bracket. The resultant sintered orthodontic bracket includes recesses and/or undercuts in the bonding surface to provide a mechanical aspect when bonded to a tooth.
Abstract:
An orthodontic appliance includes a portion made of a shape memory alloy having a base alloy composition of at least two different metallic elements and a treated region having an alloy composition that is depleted in at least one of the metallic elements. The base alloy may include a nickel titanium alloy (NiTi), a copper chromium nickel titanium alloy (CuCrNiTi), or a copper aluminum nickel (CuAlNi) alloy. The treated region may be depleted in at least one of copper, aluminum, nickel, and titanium relative to the base alloy composition by exposing the base alloy to a source of energy. The base alloy composition has a first austenitic finish temperature and the treated region has an austenitic finish temperature that may be different than the first austenitic finish temperature. The treated region may form a part of an archwire, a stop, a hook, a crown, a band, or an orthodontic bracket.
Abstract:
An single component light-curable orthodontic adhesive includes a curable resin monomer component; a quaternary curing initiator system; and filler. The orthodontic adhesive has a long working time (W) and short curing time (C). The adhesives are suitable as light-curing and may include a colorant. Suitable colorants include reversible, thermochromic dyes. The adhesive may also include a resin toughening component.
Abstract:
A method of manufacturing an orthodontic appliance includes plating a first pattern of a material on a substrate to define a layer. Repeating plating of the first material one or more times forms an additional pattern. A layered structure is built up and forms a portion of the orthodontic appliance. A pattern of a second material different from a first material may be plated on the substrate or on a pattern of the first material. The material may be a sacrificial material that may be later removed. The orthodontic appliance may be an archwire or a self-ligating orthodontic bracket having one or more layered structures formed by plating patterns of the material. Plating may include plating patterns of materials so as to form a movable member in place relative to a bracket body.
Abstract:
We describe herein biocompatible single crystal Cu-based shape memory alloys (SMAs). In particular, we show biocompatibility based on MEM elution cell cytotoxicity, ISO intramuscular implant, and hemo-compatibility tests producing negative cytotoxic results. This biocompatibility may be attributed to the formation of a durable oxide surface layer analogous to the titanium oxide layer that inhibits body fluid reaction to titanium nickel alloys, and/or the non-existence of crystal domain boundaries may inhibit corrosive chemical attack. Methods for controlling the formation of the protective aluminum oxide layer are also described, as are devices including such biocompatible single crystal copper-based SMAs.
Abstract:
Metal ingots for forming single-crystal shape-memory alloys (SMAs) may be fabricated with high reliability and control by alloying thin layers of material together. In this method, a reactive layer (e.g., aluminum) is provided in thin flat layers between layers of other materials (e.g., copper and layers of nickel). When the stacked layers are vacuum heated in a crucible to the melting temperature of the reactive layer, it becomes reactive and chemically bonds to the other layers, and may form eutectics that, as the temperature is further increased, melt homogeneously and congruently at temperatures below the melting temperatures of copper and nickel. Oxidation and evaporation are greatly reduced compared to other methods of alloying, and loss of material from turbulence is minimized.
Abstract:
A self-ligating orthodontic bracket for captivating an archwire with a tooth. The bracket includes a bracket body mountable to a tooth and a self-ligating mechanism having an archwire slot and a ligating slide. The ligating slide is movable between an open position in which an archwire is insertable into the archwire slot and a closed position in which the archwire is retained in the archwire slot. The bracket body may be formed from a non-metallic material, such as a polymer, a filled polymer composite, or a ceramic, and the self-ligating mechanism may be formed from a metal. The bracket may include a resilient engagement member with a detent positioned to engage an aperture extending through the ligating slide when the ligating slide is in the closed position.
Abstract:
Devices and methods for the application of materials to an interior space of a tooth, such as the extirpated pulp chamber and/or root canals of the tooth subsequent to root canal surgery. The device has one or more syringe-like pistons and associated chambers for drawing a vacuum within an extirpated pulp chamber and applying cleansing, sealing, and/or filler materials into the tooth under continued vacuum pressure to ensure complete and thorough application.