Abstract:
Systems, apparatuses and methods of adaptively controlling a cache operating voltage are provided that comprise receiving indications of a plurality of cache usage amounts. Each cache usage amount corresponds to an amount of data to be accessed in a cache by one of a plurality of portions of a data processing application. The plurality of cache usage amounts are determining based on the received indications of the plurality of cache usage amounts. A voltage level applied to the cache is adaptively controlled based on one or more of the plurality of determined cache usage amounts. Memory access to the cache is controlled to be directed to a non-failing portion of the cache at the applied voltage level.
Abstract:
Some embodiments of a processing device include one or more power supply monitors to provide one or more counts representative of one or more operating frequencies of one or more circuit blocks based on a voltage supplied to the circuit block(s). Some embodiments of the processing device also include a system management unit to determine an initial voltage supplied to the circuit block(s) based on a target count and to reduce the voltage supplied to the circuit block(s) from the initial voltage in response to the count(s) generated by the power supply monitor(s) exceeding the target count.
Abstract:
An integrated circuit includes a multiple number of processor cores and a system management unit. The multiple number of processor cores each operate at one of a multiple number of performance states. The system management unit is coupled to the multiple number of processor cores, for setting performance states of the multiple number of processor cores. The system management unit boosts a first performance state of a first processor core of the multiple number of processor cores based on both a first temperature calculated from an estimated power consumption, and a second temperature based on a temperature measurement.
Abstract:
Methods, apparatus, and fabrication processes relating to thermal calculations of an integrated circuit device are reported. The methods may comprise determining a power consumption by a power entity of an integrated circuit, the power entity comprising at least one functional element of the integrated circuit; determining a temperature of a thermal entity, the thermal entity comprising a subset of the power entity; and adjusting at least one of a voltage or an operating frequency of at least one functional element of the power entity, based upon the temperature of the thermal entity being greater than or equal to a predetermined threshold temperature for the thermal entity.
Abstract:
Methods, apparatus, and fabrication processes relating to thermal calculations of an integrated circuit device are reported. The methods may comprise determining a power consumption by a power entity of an integrated circuit, the power entity comprising at least one functional element of the integrated circuit; determining a temperature of a thermal entity, the thermal entity comprising a subset of the power entity; and adjusting at least one of a voltage or an operating frequency of at least one functional element of the power entity, based upon the temperature of the thermal entity being greater than or equal to a predetermined threshold temperature for the thermal entity.
Abstract:
A method for die pair partitioning can include providing a circuit die. The method can additionally include providing one or more additional circuit die having one or more fuses positioned therein, wherein the one or more fuses identify the circuit die. The method can also include connecting the one or more additional circuit die to the circuit die. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A chiplet system includes a central processing unit (CPU) communicably coupled to a first GPU chiplet of a GPU chiplet array. The GPU chiplet array includes the first GPU chiplet communicably coupled to the CPU via a bus and a second GPU chiplet communicably coupled to the first GPU chiplet via a passive crosslink. The passive crosslink is a passive interposer die dedicated for inter-chiplet communications and partitions systems-on-a-chip (SoC) functionality into smaller functional chiplet groupings.
Abstract:
A method for controlling a data processing system includes detecting a droop in a power supply voltage of a functional circuit of the data processing system greater than a programmable droop threshold. An operation of the data processing system is throttled according to a programmable step size, a programmable assertion time, and a programmable de-assertion time in response to detecting the droop.
Abstract:
The low end operating voltage of an integrated circuit is adjusted. Oscillations are counted at a ring oscillator on the integrated circuit over a designated period of clock cycles. Based on the number of oscillations, a prediction model associated with a first set of device degradation data and a second set of static random-access memory (SRAM) low end operating voltage data is used to select a low end operating voltage limit for a processor on the integrated circuit. The low end operating voltage of the processor is set based on the selected low end operating voltage limit. These steps are repeated multiple times during operation of the processor. A method of testing integrated circuits to provide the data employed to produce the prediction model is also provided.
Abstract:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device is provided. The semiconductor chip device includes a first semiconductor chip that has a floor plan with a high heat producing area and a low heat producing area. At least one second semiconductor chip is stacked on the low heat producing area. The semiconductor chip device also includes means for transferring heat from the high heat producing area.