Abstract:
Some embodiments of a power supply monitor include a measurement circuit to measure a voltage provided to the power supply monitor, a comparator to compare the voltage to a predetermined voltage threshold, and an interface to provide, during a scan test of a processing device including the power supply monitor, a fault signal in response to the voltage being below the voltage threshold. Some embodiments of a method include providing a first test pattern to one or more power supply monitors associated with one or more circuit blocks in the processing device and capturing a first result generated by the power supply monitor(s) based on the first test pattern. The first result indicates whether a voltage provided to the circuit block(s) is below a voltage threshold.
Abstract:
A processing device and method for efficient transitioning to and from a reduced power state is provided. The processing device comprises a plurality of components having assigned registers used to store data to execute a program and a power management controller, in communication with the plurality of components. The power management controller receives an indication that the plurality of components are idle, executes a process to enter a component into a reduced power state in response to receiving an acknowledgement from the component of a request from the power management controller to remove power to the component, and executes a process to exit the component from the reduced power state in response to the component being active.
Abstract:
A method and apparatus for managing power states in a computer system includes, responsive to an event received by a processor, powering up a first circuitry. Responsive to the event not being serviceable by the first circuitry, powering up at least a second circuitry of the computer system to service the event.
Abstract:
A disclosed technique includes triggering a change for a first set of one or more functional elements and for a second set of one or more functional elements from a high-power state to a low-power state; saving first state of the first set of one or more functional elements via a first set of one or more save-state elements; saving second state of the second set of one or more functional elements via a second set of one or more save-state elements; powering down the first set of one or more functional elements and the second set of one or more functional elements; and transmitting the first state and the second state to a memory.
Abstract:
Devices and methods for linear addressing are provided. A device is provided which comprises a plurality of components having assigned registers used to store data to execute a program and a power management controller, in communication with the components. The power management controller is configured to send one of a request to remove power to the components and a request to reduce power to the components when it is determined that the components are idle, execute a first process of one of removing power and reducing power to the components and entering a reduced power state when an acknowledgement of the request is received and execute a second process of restoring power to the components when one or more of the components are indicated to be active.
Abstract:
A master/slave configuration of a frequency locked Loop (FLL) decouples the process, target voltage, temperature (PVT) tracking goals of locking the loop from adapting the clock frequency in response to voltage droops in the supply. A master oscillator circuit receives a regulated supply voltage and supplies a master oscillator signal. A control circuit supplies a master frequency control signal to control a frequency of the master oscillator signal to a target frequency. A slave oscillator circuit is coupled to a regulated supply voltage and a droopy supply voltage and supplies a slave oscillator signal having a frequency responsive to a slave frequency control signal that is based on the master frequency control signal. The frequency of the second oscillator signal is further responsive to a voltage change of the droopy supply voltage.
Abstract:
Various embodiments of a gate oxide breakdown detection technique detect gate oxide degradation due to stress on a per part basis without destroying functional circuits for an intended application. Stress on the gate oxide may be applied while nominal drain currents flow through a device, thereby stressing the device under conditions similar to actual operating conditions. The technique is relatively fast and does not require analog amplifiers or tuning of substantial amounts of other additional circuitry as compared to conventional gate oxide breakdown detection techniques.
Abstract:
A sampling circuit uses an input stage to sample an input signal and a secondary evaluation stage to maintain the output state of the input stage. Once the input stage transitions at a clock transition, the secondary evaluation stage uses regenerative feedback devices to hold the state to help ensure the sampling circuit only switches once during an evaluation.
Abstract:
An integrated circuit device includes a first module disposed within a first power domain, a second module disposed in a second power domain that is a sub-domain of the first power domain, first power gating logic, and second power gating logic. The first power gating logic generates a first virtual power supply for the first module. The second power gating logic is powered by the first virtual power supply for generating a second virtual power supply for the second power domain.
Abstract:
A method and apparatus for managing power states in a computer system includes, responsive to an event received by a processor, powering up a first circuitry. Responsive to the event not being serviceable by the first circuitry, powering up at least a second circuitry of the computer system to service the event.