Abstract:
A process for depositing aluminum nitride is disclosed. The process comprises providing a plurality of semiconductor substrates in a batch process chamber and depositing an aluminum nitride layer on the substrates by performing a plurality of deposition cycles without exposing the substrates to plasma during the deposition cycles. Each deposition cycle comprises flowing an aluminum precursor pulse into the batch process chamber, removing the aluminum precursor from the batch process chamber, and removing the nitrogen precursor from the batch process chamber after flowing the nitrogen precursor and before flowing another pulse of the aluminum precursor. The process chamber may be a hot wall process chamber and the deposition may occur at a deposition pressure of less than 1 Torr.
Abstract:
In some aspects, methods of forming a metal chalcogenide thin film are provided. According to some methods, a metal chalcogenide thin film is deposited on a substrate in a reaction space in a cyclical deposition process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase chalcogen reactant. In some aspects, methods of forming three-dimensional structure on a substrate surface are provided. In some embodiments, the method includes forming a metal chalcogenide dielectric layer between a substrate and a conductive layer. In some embodiments the method includes forming an MIS-type contact structure including a metal chalcogenide dielectric layer.
Abstract:
In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
Abstract:
Semiconductor structures, devices, and methods of forming the structures and device are disclosed. Exemplary structures include multi-gate or FinFET structures that can include both n-channel MOS (NMOS) and p-channel MOS (PMOS) devices to form CMOS structures and devices on a substrate. The devices can be formed using selective epitaxy and shallow trench isolation techniques.
Abstract:
In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
Abstract:
A method for forming a resistive random access memory (RRAM) device is disclosed. The method comprises forming a first electrode, forming a resistive switching oxide layer comprising a metal oxide by thermal atomic layer deposition (ALD), doping the resistive switching oxide layer with a metal dopant different from metal forming the metal oxide, and forming a second electrode by thermal atomic layer deposition (ALD), where the resistive switching layer is interposed between the first electrode and the second electrode. In some embodiments, forming the resistive switching oxide may be performed without exposing a surface of the switching oxide layer to a surface-modifying plasma treatment after depositing the metal oxide.
Abstract:
Methods and systems for depositing rare earth metal carbide containing layers on a surface of a substrate and structures and devices formed using the methods are disclosed. An exemplary method includes using a cyclical deposition process such as an atomic layer deposition process for depositing a rare earth metal carbide containing layer onto a surface of the substrate.
Abstract:
The current disclosure relates to methods of forming a vanadium nitride-containing layer. The method comprises providing a substrate within a reaction chamber of a reactor and depositing a vanadium nitride-containing layer onto a surface of the substrate, wherein the deposition process comprises providing a vanadium precursor to the reaction chamber and providing a nitrogen precursor to the reaction chamber. The disclosure further relates to structures and devices comprising the vanadium nitride-containing layer.
Abstract:
The current disclosure relates to the manufacture of semiconductor devices, specifically to methods of forming vanadium metal on a substrate. The methods comprise providing a substrate in a reaction chamber, providing a vanadium precursor to the reaction chamber in a vapor phase and providing a reducing agent to the reaction chamber in a vapor phase to form vanadium metal on the substrate. The disclosure further relates to structures and devices formed by the methods, as well as to a deposition assembly.
Abstract:
Methods of forming a vanadium nitride-containing layer comprise providing a substrate within a reaction chamber of a reactor and depositing a vanadium nitride-containing layer onto a surface of the substrate, wherein the deposition process comprises providing a vanadium precursor to the reaction chamber and providing a nitrogen precursor to the reaction chamber.