摘要:
Methods of forming thin-film structures including metal carbide material, and structures and devices including the metal carbide material are disclosed. Exemplary structures include metal carbide material formed using two or more different processes (e.g., two or more different precursors), which enables tuning of various metal carbide material properties, including resistivity, current leakage, and work function.
摘要:
Methods of forming structures including a photoresist absorber layer and structures including the photoresist absorber layer are disclosed. Exemplary methods include forming the photoresist absorber layer that includes at least two elements having an EUV cross section (σα) of greater than 2×106 cm2/mol.
摘要:
The present disclosure is directed to methods in situ generation of a hydrogen halide for use in an etching process for selective etching of a material from other(s) on a surface layer of a substrate, to methods of etching utilizing the in situ generated hydrogen halide, and to systems carrying the out the disclosed processes.
摘要:
The current disclosure relates to methods of depositing silicon oxide on a substrate, methods of forming a semiconductor device and a method of forming a structure. The method comprises providing a substrate in a reaction chamber, providing a silicon precursor in the reaction chamber, the silicon precursor comprising a silicon atom connected to at least one oxygen atom, the at least one oxygen atom being connected to a carbon atom, and providing a reactant comprising hydrogen atoms in the reaction chamber to form silicon oxide on the substrate.
摘要:
Methods of forming thin-film structures including metal carbide material, and structures and devices including the metal carbide material are disclosed. Exemplary structures include metal carbide material formed using two or more different processes (e.g., two or more different precursors), which enables tuning of various metal carbide material properties, including resistivity, current leakage, and work function.
摘要:
In some embodiments, an oxide layer is grown on a semiconductor substrate by oxidizing the semiconductor substrate by exposure to hydrogen peroxide at a process temperature of about 500° C. or less. The exposure to the hydrogen peroxide may continue until the oxide layer grows by a thickness of about 1 Å or more. Where the substrate is a germanium substrate, while oxidation using H2O has been found to form germanium oxide with densities of about 4.25 g/cm3, oxidation according to some embodiments can form an oxide layer with a density of about 6 g/cm3 or more (for example, about 6.27 g/cm3). In some embodiments, another layer of material is deposited directly on the oxide layer. For example, a dielectric layer may be deposited directly on the oxide layer.
摘要翻译:在一些实施例中,通过在约500℃或更低的工艺温度下暴露于过氧化氢来氧化半导体衬底,在半导体衬底上生长氧化物层。 暴露于过氧化氢可持续到氧化层生长约1埃以上的厚度。 当衬底是锗衬底时,虽然已经发现使用H 2 O的氧化形成密度为4.25g / cm 3的氧化锗,但是根据一些实施方案的氧化可以形成密度为约6g / cm 3或更高的氧化物层 例如约6.27g / cm 3)。 在一些实施例中,另一层材料直接沉积在氧化物层上。 例如,介电层可以直接沉积在氧化物层上。
摘要:
In some aspects, methods of forming a metal sulfide thin film are provided. According to some methods, a metal sulfide thin film is deposited on a substrate in a reaction space in a cyclical process where at least one cycle includes alternately and sequentially contacting the substrate with a first vapor-phase metal reactant and a second vapor-phase sulfur reactant. In some aspects, methods of forming a three-dimensional architecture on a substrate surface are provided. In some embodiments, the method includes forming a metal sulfide thin film on the substrate surface and forming a capping layer over the metal sulfide thin film. The substrate surface may comprise a high-mobility channel.
摘要:
The current disclosure generally relates to the manufacture of semiconductor devices. Specifically, the disclosure relates to methods of depositing a layer on a substrate comprising a recess. The method comprises providing the substrate comprising a recess in a reaction chamber, depositing inhibition material on the substrate to fill the recess with inhibition material, removing the inhibition material from the substrate for exposing a deposition area and depositing a layer on the deposition area by a vapor deposition process. A vapor deposition assembly for performing the method is also disclosed.
摘要:
In some embodiments, a semiconductor surface having a high mobility semiconductor may be effectively passivated by nitridation, preferably using hydrazine, a hydrazine derivative, or a combination thereof. The surface may be the semiconductor surface of a transistor channel region. In some embodiments, a semiconductor surface oxide layer is formed at the semiconductor surface and the passivation is accomplished by forming a semiconductor oxynitride layer at the surface, with the nitridation contributing nitrogen to the surface oxide to form the oxynitride layer. The semiconductor oxide layer may be deposited by atomic layer deposition (ALD) and the nitridation may also be conducted as part of the ALD.
摘要:
In some embodiments, a semiconductor surface may be effectively passivated by nitridation, preferably using hydrazine, a hydrazine derivative, or a combination thereof. The surface may be the semiconductor surface of a transistor channel region. In some embodiments, native oxide is removed from the semiconductor surface and the surface is subsequently nitrided. In some other embodiments, a semiconductor surface oxide layer is formed at the semiconductor surface and the passivation is accomplished by forming a semiconductor oxynitride layer at the surface, with the nitridation contributing nitrogen to the surface oxide to form the oxynitride layer. The semiconductor oxide layer may be deposited by atomic layer deposition (ALD) and the nitridation may also be conducted as part of the ALD.