摘要:
A technique for a nanodevice is provided. The nanodevice includes a fluidic cell, and a membrane dividing the fluidic cell. A nanopore is formed through the membrane, and the nanopore is coated with an organic compound. A first part of the organic compound binds to a surface of the nanopore and a second part of the organic compound is exposed freely inside of the nanopore. The second part of the organic compound is configured to be switched among a first neutral hydrophilic end group, a second negatively charged hydrophilic end group, and a third neutral hydrophobic end group based on a switching mechanism.
摘要:
A semiconductor device and a method of fabricating a semiconductor device are disclosed. Embodiments of the invention use a photosensitive self-assembled monolayer to pattern the surface of a substrate into hydrophilic and hydrophobic regions, and an aqueous (or alcohol) solution of a dopant compound is deposited on the substrate surface. The dopant compound only adheres on the hydrophilic regions. After deposition, the substrate is coated with a very thin layer of oxide to cap the compounds, and the substrate is annealed at high temperatures to diffuse the dopant atoms into the silicon and to activate the dopant. In one embodiment, the method comprises providing a semiconductor substrate including an oxide surface, patterning said surface into hydrophobic and hydrophilic regions, depositing a compound including a dopant on the substrate, wherein the dopant adheres to the hydrophilic region, and diffusing the dopant into the oxide surface of the substrate.
摘要:
A technique for embedding a nanotube in a nanopore is provided. A membrane separates a reservoir into a first reservoir part and a second reservoir part, and the nanopore is formed through the membrane for connecting the first and second reservoir parts. An ionic fluid fills the nanopore, the first reservoir part, and the second reservoir part. A first electrode is dipped in the first reservoir part, and a second electrode is dipped in the second reservoir part. Driving the nanotube into the nanopore causes an inner surface of the nanopore to form a covalent bond to an outer surface of the nanotube via an organic coating so that the inner surface of the nanotube will be the new nanopore with a super smooth surface for studying bio-molecules while they translocate through the nanotube.
摘要:
Disclosed is a method which includes forming a bottom metallic electrode on an insulating substrate; forming a semiconductor junction on the metallic electrode; forming a transparent conducting overlayer in contact with the semiconductor junction; and forming a metallic layer in contact with the transparent conducting overlayer, wherein the metallic layer is formed by a plating process. The plating process may be an electroplating process or an electroless plating process. The transparent conducting overlayer may be carbon nanotubes or graphene. The semiconductor junction may be a p-i-n semiconductor junction, a p-n semiconductor junction, an n-p semiconductor junction or an n-i-p semiconductor junction.
摘要:
A graphene nanomesh based charge sensor and method for producing a graphene nanomesh based charge sensor. The method includes generating multiple holes in graphene in a periodic way to create a graphene nanomesh with a patterned array of multiple holes, passivating an edge of each of the multiple holes of the graphene nanomesh to allow for functionalization of the graphene nanomesh, and functionalizing the passivated edge of each of the multiple holes of the graphene nanomesh with a chemical compound that facilitates chemical binding of a receptor of a target molecule to the edge of one or more of the multiple holes, allowing the target molecule to bind to the receptor, causing a charge to be transferred to the graphene nanomesh to produce a graphene nanomesh based charge sensor for the target molecule.
摘要:
A spin-on formulation that is useful in stripping an ion implanted photoresist is provided that includes an aqueous solution of a water soluble polymer containing at least one acidic functional group, and at least one lanthanide metal-containing oxidant. The spin-on formulation is applied to an ion implanted photoresist and baked to form a modified photoresist. The modified photoresist is soluble in aqueous, acid or organic solvents. As such one of the aforementioned solvents can be used to completely strip the ion implanted photoresist as well as any photoresist residue that may be present. A rinse step can follow the stripping of the modified photoresist.
摘要:
Methods for selectively placing carbon nanotubes on a substrate surface by using functionalized carbon nanotubes having an organic compound that is covalently bonded to such carbon nanotubes. The organic compound comprises at least two functional groups, the first of which is capable of forming covalent bonds with carbon nanotubes, and the second of which is capable of selectively bonding metal oxides. Such functionalized carbon nanotubes are contacted with a substrate surface that has at least one portion containing a metal oxide. The second functional group of the organic compound selectively bonds to the metal oxide, so as to selectively place the functionalized carbon nanotubes on the at least one portion of the substrate surface that comprises the metal oxide.
摘要:
Accordingly, the present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A substrate which has a conductive layer disposed thereon is provided and the conductive layer has an oxide layer with an exposed surface. The exposed surface of the oxide layer contacts a solution of an organic surface active compound in an organic solvent to form a protective layer of the organic surface active compound over the oxide layer. The protective layer has a thickness of from about 0.5 nm to about 5 nm and ranges therebetween depending on a chemical structure of the surface active compound.
摘要:
Transparent conducting electrodes include a doped single walled carbon nanotube film and methods for forming the doped single walled carbon nanotube (SWCNT) by solution processing. The method generally includes depositing single walled carbon nanotubes dispersed in a solvent and a surfactant onto a substrate to form a single walled carbon nanotube film thereon; removing all of the surfactant from the carbon nanotube film; and exposing the single walled carbon nanotube film to a single electron oxidant in a solution such that one electron is transferred from the single walled carbon nanotubes to each molecule of the single electron oxidant.
摘要:
Techniques for ultra-sensitive detection are provided. In one aspect, a detection device is provided. The detection device comprises a source; a drain; a nanowire comprising a semiconductor material having a first end clamped to the source and a second end clamped to the drain and suspended freely therebetween; and a gate in close proximity to the nanowire.