-
公开(公告)号:US07402872B2
公开(公告)日:2008-07-22
申请号:US11336160
申请日:2006-01-20
IPC分类号: H01L29/76 , H01L29/94 , H01L31/062 , H01L31/113
CPC分类号: H01L29/7834 , H01L29/665 , H01L29/66636
摘要: A method is described for manufacturing an n-MOS semiconductor transistor. Recesses are formed in a semiconductor substrate adjacent a gate electrode structure. Silicon is embedded in the recesses via a selective epitaxial growth process. The epitaxial silicon is in-situ alloyed with substitutional carbon and in-situ doped with phosphorus. The silicon-carbon alloy generates a uniaxial tensile strain in the channel region between the source and drain, thereby increasing electron channel mobility and the transistor's drive current. The silicon-carbon alloy decreases external resistances by reducing contact resistance between source/drain and silicide regions and by reducing phosphorous diffusivity, thereby permitting closer placement of the transistor's source/drain and channel regions.
摘要翻译: 描述了制造n-MOS半导体晶体管的方法。 在与栅电极结构相邻的半导体衬底中形成凹部。 硅通过选择性外延生长工艺嵌入凹槽中。 外延硅与替代原位合金化并原位掺磷。 硅碳合金在源极和漏极之间的沟道区域中产生单轴拉伸应变,从而增加电子通道迁移率和晶体管的驱动电流。 硅碳合金通过降低源极/漏极和硅化物区域之间的接触电阻并且通过减少磷扩散性来降低外部电阻,从而允许晶体管的源极/漏极和沟道区域更接近地放置。
-
22.
公开(公告)号:US20080135894A1
公开(公告)日:2008-06-12
申请号:US12009122
申请日:2008-01-15
申请人: Mark T. Bohr , Steven J. Keating , Thomas A. Letson , Anand S. Murthy , Donald W. O'Neill , Willy Rachmady
发明人: Mark T. Bohr , Steven J. Keating , Thomas A. Letson , Anand S. Murthy , Donald W. O'Neill , Willy Rachmady
IPC分类号: H01L29/94
CPC分类号: H01L29/045 , H01L21/30608 , H01L29/165 , H01L29/665 , H01L29/66628 , H01L29/66636 , H01L29/78 , H01L29/7848
摘要: Embodiments are an improved transistor structure and the method of fabricating the structure. In particular, a wet etch of an embodiment forms source and drain regions with an improved tip shape to improve the performance of the transistor by improving control of short channel effects, increasing the saturation current, improving control of the metallurgical gate length, increasing carrier mobility, and decreasing contact resistance at the interface between the source and drain and the silicide.
摘要翻译: 实施例是改进的晶体管结构和制造该结构的方法。 特别地,实施例的湿蚀刻形成具有改进的尖端形状的源极和漏极区域,以通过改善短沟道效应的控制,增加饱和电流,改善冶金栅极长度的控制,增加载流子迁移率来提高晶体管的性能 并且在源极和漏极与硅化物之间的界面处降低接触电阻。
-
公开(公告)号:US07060576B2
公开(公告)日:2006-06-13
申请号:US10692696
申请日:2003-10-24
申请人: Nick Lindert , Anand S. Murthy , Justin K. Brask
发明人: Nick Lindert , Anand S. Murthy , Justin K. Brask
IPC分类号: H01L21/337 , H01L21/8238 , H01L21/336
CPC分类号: H01L29/66628 , H01L29/66636
摘要: An epitaxially deposited source/drain extension may be formed for a metal oxide semiconductor field effect transistor. A sacrificial layer may be formed and etched away to undercut under the gate electrode. Then a source/drain extension of epitaxial silicon may be deposited to extend under the edges of the gate electrode. As a result, the extent by which the source/drain extension extends under the gate may be controlled by controlling the etching of the sacrificial material. Its thickness and depth may be controlled by controlling the deposition process. Moreover, the characteristics of the source/drain extension may be controlled independently of those of the subsequently formed deep or heavily doped source/drain junction.
摘要翻译: 可以为金属氧化物半导体场效应晶体管形成外延沉积的源极/漏极延伸。 可以形成牺牲层并蚀刻掉在栅电极下方的底切。 然后,可以沉积外延硅的源极/漏极延伸部,以在栅电极的边缘下延伸。 结果,可以通过控制牺牲材料的蚀刻来控制源极/漏极延伸在栅极下延伸的程度。 其厚度和深度可以通过控制沉积过程来控制。 此外,可以独立于后续形成的深度或重掺杂源极/漏极结的特性来控制源极/漏极延伸的特性。
-
公开(公告)号:US20240105798A1
公开(公告)日:2024-03-28
申请号:US17935652
申请日:2022-09-27
申请人: Abhishek A. Sharma , Tahir Ghani , Anand S. Murthy , Elliot Tan , Shem Ogadhoh , Sagar Suthram , Pushkar Sharad Ranade , Wilfred Gomes
发明人: Abhishek A. Sharma , Tahir Ghani , Anand S. Murthy , Elliot Tan , Shem Ogadhoh , Sagar Suthram , Pushkar Sharad Ranade , Wilfred Gomes
IPC分类号: H01L29/423 , H01L29/775 , H01L29/78 , H01L29/786
CPC分类号: H01L29/42392 , H01L29/775 , H01L29/785 , H01L29/78696 , H01L2029/7858
摘要: An example IC device formed using trim patterning as described herein may include a support structure, a first elongated structure (e.g., a first fin or nanoribbon) and a second elongated structure (e.g., a second fin or nanoribbon), proximate to an end of the first elongated structure. An angle between a projection of the first elongated structure on the support structure and an edge of the support structure may be between about 5 and 45 degrees, while an angle between a projection of the second elongated structure on the support structure and the edge of the support structure may be less than about 15 degrees.
-
公开(公告)号:US09437691B2
公开(公告)日:2016-09-06
申请号:US13990249
申请日:2011-12-20
申请人: Glenn A. Glass , Anand S. Murthy
发明人: Glenn A. Glass , Anand S. Murthy
IPC分类号: H01L29/66 , H01L29/36 , H01L21/285 , H01L29/165 , H01L29/45 , H01L29/49 , H01L29/78 , H01L29/167 , H01L21/02 , H01L29/08
CPC分类号: H01L29/0676 , H01L21/02532 , H01L21/28512 , H01L21/28525 , H01L21/3215 , H01L21/76831 , H01L23/535 , H01L27/092 , H01L27/0924 , H01L29/0615 , H01L29/0847 , H01L29/086 , H01L29/165 , H01L29/167 , H01L29/36 , H01L29/41791 , H01L29/42392 , H01L29/45 , H01L29/456 , H01L29/4966 , H01L29/66477 , H01L29/66545 , H01L29/6659 , H01L29/66628 , H01L29/66636 , H01L29/66681 , H01L29/66931 , H01L29/7785 , H01L29/78 , H01L29/7816 , H01L29/7833 , H01L29/7848 , H01L29/785 , H01L29/7851
摘要: Techniques are disclosed for forming column IV transistor devices having source/drain regions with high concentrations of germanium, and exhibiting reduced parasitic resistance relative to conventional devices. In some example embodiments, the source/drain regions each include a thin p-type silicon or germanium or SiGe deposition with the remainder of the source/drain material deposition being p-type germanium or a germanium alloy (e.g., germanium:tin or other suitable strain inducer, and having a germanium content of at least 80 atomic % and 20 atomic % or less other components). In some cases, evidence of strain relaxation may be observed in the germanium rich cap layer, including misfit dislocations and/or threading dislocations and/or twins. Numerous transistor configurations can be used, including both planar and non-planar transistor structures (e.g., FinFETs and nanowire transistors), as well as strained and unstrained channel structures.
摘要翻译: 公开了用于形成具有高浓度锗的源/漏区的列IV晶体管器件的技术,并且相对于常规器件显示降低的寄生电阻。 在一些示例性实施例中,源极/漏极区域各自包括薄的p型硅或锗或SiGe沉积,其余源极/漏极材料沉积为p型锗或锗合金(例如,锗:锡或其它 合适的应变诱导剂,并且锗含量为至少80原子%和20原子%以下的其他组分)。 在某些情况下,可以在富锗盖层中观察到应变松弛的证据,包括失配位错和/或穿透位错和/或双胞胎。 可以使用多个晶体管配置,包括平面和非平面晶体管结构(例如,FinFET和纳米线晶体管),以及应变和非限制的通道结构。
-
公开(公告)号:US09224810B2
公开(公告)日:2015-12-29
申请号:US13996503
申请日:2011-12-23
申请人: Seiyon Kim , Kelin J. Kuhn , Tahir Ghani , Anand S. Murthy , Annalisa Cappellani , Stephen M. Cea , Rafael Rios , Glenn A. Glass
发明人: Seiyon Kim , Kelin J. Kuhn , Tahir Ghani , Anand S. Murthy , Annalisa Cappellani , Stephen M. Cea , Rafael Rios , Glenn A. Glass
IPC分类号: H01L29/06 , H01L21/8238 , H01L27/092 , H01L27/12 , B82Y10/00 , H01L29/66 , H01L29/775
CPC分类号: H01L21/823821 , B82Y10/00 , H01L21/8238 , H01L21/823807 , H01L21/823828 , H01L21/84 , H01L21/845 , H01L27/092 , H01L27/0924 , H01L27/12 , H01L27/1203 , H01L27/1211 , H01L29/0673 , H01L29/0676 , H01L29/1033 , H01L29/42356 , H01L29/42392 , H01L29/66439 , H01L29/775 , H01L29/7853
摘要: Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.
摘要翻译: 描述了免费的金属氧化物半导体纳米线结构。 例如,半导体结构包括第一半导体器件。 第一半导体器件包括设置在衬底之上的第一纳米线。 第一纳米线具有在衬底上方的第一距离的中点,并且包括在离散通道区域的任一侧上的离散沟道区域和源极和漏极区域。 第一栅极电极堆叠完全包围第一纳米线的离散通道区域。 半导体结构还包括第二半导体器件。 第二半导体器件包括设置在衬底上方的第二纳米线。 第二纳米线在衬底上方具有第二距离的中点,并且在离散通道区域的任一侧上包括离散通道区域和源极和漏极区域。 第一距离与第二距离不同。 第二栅极电极堆叠完全围绕第二纳米线的离散通道区域。
-
公开(公告)号:US09117791B2
公开(公告)日:2015-08-25
申请号:US13990238
申请日:2011-09-30
申请人: Glenn A. Glass , Anand S. Murthy , Tahir Ghani
发明人: Glenn A. Glass , Anand S. Murthy , Tahir Ghani
IPC分类号: H01L31/00 , H01L21/02 , H01L29/36 , H01L21/285 , H01L29/165 , H01L29/45 , H01L29/49 , H01L29/66 , H01L29/78 , H01L29/167 , H01L29/08
CPC分类号: H01L29/0676 , H01L21/02532 , H01L21/28512 , H01L21/28525 , H01L21/3215 , H01L21/76831 , H01L23/535 , H01L27/092 , H01L27/0924 , H01L29/0615 , H01L29/0847 , H01L29/086 , H01L29/165 , H01L29/167 , H01L29/36 , H01L29/41791 , H01L29/42392 , H01L29/45 , H01L29/456 , H01L29/4966 , H01L29/66477 , H01L29/66545 , H01L29/6659 , H01L29/66628 , H01L29/66636 , H01L29/66681 , H01L29/66931 , H01L29/7785 , H01L29/78 , H01L29/7816 , H01L29/7833 , H01L29/7848 , H01L29/785 , H01L29/7851
摘要: Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a standard contact stack such as a series of metals on, for example, silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example such embodiment, an intermediate boron doped germanium layer is provided between the source/drain and contact metals to significantly reduce contact resistance. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs), as well as strained and unstrained channel structures. Graded buffering can be used to reduce misfit dislocation. The techniques are particularly well-suited for implementing p-type devices, but can be used for n-type devices if so desired.
摘要翻译: 公开了用于形成相对于常规器件具有降低的寄生接触电阻的晶体管器件的技术。 这些技术可以例如使用例如硅或硅锗(SiGe)源极/漏极区域上的一系列金属的标准接触堆叠来实现。 根据这种实施例的一个示例,在源极/漏极和接触金属之间提供中间硼掺杂锗层以显着降低接触电阻。 根据本公开,包括平面和非平面晶体管结构(例如,FinFET)以及应变和非限制的通道结构,许多晶体管配置和合适的制造工艺将是显而易见的。 分级缓冲可用于减少错配错位。 这些技术特别适用于实现p型器件,但如果需要,可以用于n型器件。
-
28.
公开(公告)号:US08957476B2
公开(公告)日:2015-02-17
申请号:US13722801
申请日:2012-12-20
IPC分类号: H01L21/8234 , H01L27/088
CPC分类号: H01L29/16 , H01L21/823431 , H01L27/0886 , H01L29/0669 , H01L29/1033 , H01L29/785 , H01L29/7853
摘要: Embodiments of the present disclosure provide techniques and configurations associated with conversion of thin transistor elements from silicon (Si) to silicon germanium (SiGe). In one embodiment, a method includes providing a semiconductor substrate having a channel body of a transistor device disposed on the semiconductor substrate, the channel body comprising silicon, forming a cladding layer comprising germanium on the channel body, and annealing the channel body to cause the germanium to diffuse into the channel body. Other embodiments may be described and/or claimed.
摘要翻译: 本公开的实施例提供了与从硅(Si)到硅锗(SiGe)的薄晶体管元件的转换相关联的技术和配置。 在一个实施例中,一种方法包括提供具有设置在半导体衬底上的晶体管器件的沟道体的半导体衬底,沟道体包括硅,在沟道本体上形成包含锗的包覆层,并使通道体退火, 锗扩散到通道体内。 可以描述和/或要求保护其他实施例。
-
公开(公告)号:US20140197377A1
公开(公告)日:2014-07-17
申请号:US13996503
申请日:2011-12-23
申请人: Seiyon Kim , Kelin J. Kuhn , Tahir Ghani , Anand S. Murthy , Annalisa Cappellani , Stephen M. Cea , Rafael Rios , Glenn A. Glass
发明人: Seiyon Kim , Kelin J. Kuhn , Tahir Ghani , Anand S. Murthy , Annalisa Cappellani , Stephen M. Cea , Rafael Rios , Glenn A. Glass
IPC分类号: H01L29/06 , H01L27/092 , H01L21/8238
CPC分类号: H01L21/823821 , B82Y10/00 , H01L21/8238 , H01L21/823807 , H01L21/823828 , H01L21/84 , H01L21/845 , H01L27/092 , H01L27/0924 , H01L27/12 , H01L27/1203 , H01L27/1211 , H01L29/0673 , H01L29/0676 , H01L29/1033 , H01L29/42356 , H01L29/42392 , H01L29/66439 , H01L29/775 , H01L29/7853
摘要: Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.
摘要翻译: 描述了免费的金属氧化物半导体纳米线结构。 例如,半导体结构包括第一半导体器件。 第一半导体器件包括设置在衬底之上的第一纳米线。 第一纳米线具有在衬底上方的第一距离的中点,并且包括在离散通道区域的任一侧上的离散沟道区域和源极和漏极区域。 第一栅极电极堆叠完全包围第一纳米线的离散通道区域。 半导体结构还包括第二半导体器件。 第二半导体器件包括设置在衬底上方的第二纳米线。 第二纳米线在衬底上方具有第二距离的中点,并且包括在离散通道区域的任一侧上的离散沟道区域和源极和漏极区域。 第一距离与第二距离不同。 第二栅极电极堆叠完全围绕第二纳米线的离散通道区域。
-
公开(公告)号:US20140027816A1
公开(公告)日:2014-01-30
申请号:US13560474
申请日:2012-07-27
申请人: Stephen M. Cea , Anand S. Murthy , Glenn A. Glass , Daniel B. Aubertine , Tahir Ghani , Jack T. Kavalieros , Roza Kotlyar
发明人: Stephen M. Cea , Anand S. Murthy , Glenn A. Glass , Daniel B. Aubertine , Tahir Ghani , Jack T. Kavalieros , Roza Kotlyar
IPC分类号: H01L29/78 , H01L29/165
CPC分类号: H01L29/1054 , H01L21/76224 , H01L29/06 , H01L29/0649 , H01L29/0653 , H01L29/0847 , H01L29/16 , H01L29/161 , H01L29/165 , H01L29/66545 , H01L29/66795 , H01L29/66818 , H01L29/785 , H01L29/7851
摘要: Techniques are disclosed for incorporating high mobility strained channels into fin-based transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, silicon germanium (SiGe) is cladded onto silicon fins to provide a desired stress, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and the cladding deposition can occur at a plurality of locations within the process flow. In some cases, the built-in stress from the cladding layer may be enhanced with a source/drain stressor that compresses both the fin and cladding layers in the channel. In some cases, an optional capping layer can be provided to improve the gate dielectric/semiconductor interface. In one such embodiment, silicon is provided over a SiGe cladding layer to improve the gate dielectric/semiconductor interface.
摘要翻译: 公开了用于将高迁移率应变通道结合到鳍状晶体管(例如,诸如双栅极,三相等等的FinFET)中的技术,其中应力材料被包覆到鳍的沟道区域上。 在一个示例性实施例中,硅锗(SiGe)被包覆到硅散热片上以提供期望的应力,尽管可以使用其它鳍和包层材料。 这些技术与典型的工艺流程兼容,并且包层沉积可以发生在工艺流程内的多个位置处。 在一些情况下,来自包覆层的内置应力可以通过压缩通道中的鳍和覆层的源极/漏极应力来增强。 在一些情况下,可以提供可选的封盖层以改善栅极电介质/半导体界面。 在一个这样的实施例中,硅被提供在SiGe包覆层上以改善栅极电介质/半导体界面。
-
-
-
-
-
-
-
-
-