Abstract:
Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes an exhaust cooling apparatus located downstream of a plasma source. The exhaust cooling apparatus includes at least one cooling plate a device for introducing turbulence to the exhaust flowing within the exhaust cooling apparatus. The device may be a plurality of fins, a cylinder with a curved top portion, or a diffuser with angled blades. The turbulent flow of the exhaust within the exhaust cooling apparatus causes particles to drop out of the exhaust, minimizing particles forming in equipment downstream of the exhaust cooling apparatus.
Abstract:
Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
Abstract:
Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate.
Abstract:
Embodiments of the present invention generally provide plasma etch process chamber improvements. An improved gas injection nozzle is provided for use at a central location of the lid of the chamber. The gas injection nozzle may be used in an existing plasma etch chamber and is configured to provide a series of conic gas flows across the surface of a substrate positioned within the chamber. In one embodiment, an improved exhaust kit for use in the plasma etch chamber is provided. The exhaust kit includes apparatus that may be used in an existing plasma etch chamber and is configured to provide annular flow of exhaust gases from the processing region of the chamber.
Abstract:
Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes a plasma source that has a first plate and a second plate parallel to the first plate. An electrode is disposed between the first and second plates and an outer wall is disposed between the first and second plates surrounding the electrode. The plasma source has a first plurality of magnets disposed on the first plate and a second plurality of magnets disposed on the second plate. The magnetic field created by the first and second plurality of magnets is substantially perpendicular to the electric field created between the electrode and the outer wall. In this configuration, a dense plasma is created.